General Relativity and Gravitation

, Volume 8, Issue 9, pp 737–752 | Cite as

Spatially homogeneous Lichnerowicz universes

  • István Ozsváth
Research Articles


We find in this paper a special class of spatially homogeneous solutions of the Einstein-Lichnerowicz equations, describing the gravitational field of an electrically charged fluid with infinite conductivity.


Differential Geometry Special Class Gravitational Field Homogeneous Solution Charged Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lichnerowicz, A. (1967).Relativistic Hydrodynamics (W. A. Benjamin, New York).Google Scholar
  2. 2.
    Ozsvath, I. (1967).J. Math. Phys.,8, 326.Google Scholar
  3. 3.
    Ozsvath, I. (1970).J. Math. Phys.,11, 2860.Google Scholar
  4. 4.
    Taub, A. H. (1951).Ann. Math.,53, 472.Google Scholar
  5. 5.
    Heckmann, O., and Schucking, E. (1962).Gravitation, ed. Witten, L. Wiley, New York.Google Scholar
  6. 6.
    Ellis, G. F. R., and MacCallum, M. A. H. (1969).Commun. Math. Phys.,12, 108.Google Scholar
  7. 7.
    MacCallum, M. A. H., and Taub, A. H. (1972).Commun. Math. Phys.,25, 173.Google Scholar
  8. 8.
    Whittaker, E. T. (1965).Analytical Dynamics of Particles and Rigid Bodies (Cambridge U.P., Cambridge).Google Scholar
  9. 9.
    Misner, C. W. (1969).Phys. Rev. Lett.,22, 1071(c).Google Scholar
  10. 10.
    Ryan, M. P., and Shepley, L. C. (1915).Homogeneous Relativistic Cosmologies (Princeton University Press, Princeton, New Jersey).Google Scholar

Copyright information

© Plenum Publishing Corp. 1977

Authors and Affiliations

  • István Ozsváth
    • 1
  1. 1.Program in Mathematical SciencesThe University of Texas at DallasRichardson

Personalised recommendations