General Relativity and Gravitation

, Volume 14, Issue 7, pp 691–701 | Cite as

Einstein-Cartan-Maxwell-bianchi type-V cosmological models

  • Dieter Lorenz
Research Articles


Exact cosmological solutions of the Einstein- Cartan-Maxwell equations with spin, “stiff” matter and an electromagnetic field for Bianchi type-V universes are obtained. A class of nonsingular solutions is presented. The most important characteristic of these solutions is that in one case the effect of the electromagnetic field is to reduce the value of the minimum volume while in another case there exists the possibility of enlarging this value arbitrarily.


Electromagnetic Field Differential Geometry Cosmological Model Minimum Volume Cosmological Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergmann, P. G., and De Sabbata, V. (eds.) (1980).Cosmology and Gravitation, Plenum Press, New York.Google Scholar
  2. 2.
    Kopzynski, W. (1972).Phys. Lett.,39A, 219.Google Scholar
  3. 3.
    Kopzynski, W. (1973).Phys. Lett.,43A, 63.Google Scholar
  4. 4.
    Tafel, J. (1973).Phys. Lett.,45A, 341.Google Scholar
  5. 5.
    Tafel, J. (1975).Acta Phys. Pol.,B6, 537.Google Scholar
  6. 6.
    Kuchowicz, B. (1975).Acta Cosmologica,3, 109.Google Scholar
  7. 7.
    Kuchowicz, B. (1975).Acta Phys. Pol.,B6, 173.Google Scholar
  8. 8.
    Kuchowicz, B. (1975).Acta Phys. Pol.,B6, 555.Google Scholar
  9. 9.
    Kuchowicz, B. (1975).J. Phys. A.,8, L29.Google Scholar
  10. 10.
    Kuchowicz, B. (1975).Phys. Lett.,54A, 13.Google Scholar
  11. 11.
    Kuchowicz, B. (1976).Astrophys. Space Sci.,39, 157.Google Scholar
  12. 12.
    Kuchowicz, B. (1976).Astrophys. Space Sci.,40, 167.Google Scholar
  13. 13.
    Kuchowicz, B. (1976).Acta Phys. Pol.,B7, 81.Google Scholar
  14. 14.
    Kuchowicz, B. (1976).Acta Cosmologica,4, 67.Google Scholar
  15. 15.
    Kuchowicz, B. (1978).Gen. Rel. Grav.,9, 511.Google Scholar
  16. 16.
    Raychaudhuri, A. K. (1975).Phys. Rev. D,12, 952.Google Scholar
  17. 17.
    Raychaudhuri, A. K. (1979).Theoretical Cosmology, Clarendon Press, Oxford.Google Scholar
  18. 18.
    Kerlick, G. D. (1975). Dissertation, Princeton University.Google Scholar
  19. 19.
    Kerlick, G. D. (1976).Ann. Phys.,99, 127.Google Scholar
  20. 20.
    Tsoubelis, D. (1979).Phys. Rev. D,20, 3004.Google Scholar
  21. 21.
    Tsoubelis, D. (1981).Phys. Rev. D,23, 823.Google Scholar
  22. 22.
    Lorenz, D. (1981).Acta Phys. Pol.,B12, 939.Google Scholar
  23. 23.
    Trautman, A. (1973).Symp. Math.,12, 139.Google Scholar
  24. 24.
    Trautman, A. (1973).Nature (Phys. Sci.),242, 7.Google Scholar
  25. 25.
    Trautman, A. (1973). Ondes et radiations gravitationelles, Colloque du CNRS No. 220, 161.Google Scholar
  26. 26.
    Stewart, J., and Hájiček, P. (1973).Nature (Phys. Sci.),244, 96.Google Scholar
  27. 27.
    Zel'dovich, Ya. B., and Novikov, I. D. (1975).Structure and Evolution of the Universe, Nauka, Moscow.Google Scholar
  28. 28.
    Collins, C. B., and Hawking, S. W. (1973).Astrophys. J.,180, 317.Google Scholar
  29. 29.
    Hughston, L. P., and Jacobs, K. C. (1970).Astrophys. J.,160, 147.Google Scholar
  30. 30.
    Jacobs, K. C. (1977). Preprint MPI-PAE-Astro 121, Max Planck Institut, München.Google Scholar
  31. 31.
    Tsoubelis, D. (1979).Lett. Nuovo Cimento,26, 274.Google Scholar
  32. 32.
    Novello, M. (1976).Phys. Lett.,59A, 105.Google Scholar
  33. 33.
    De Sabbata, V., and Gasperini, M., (1980).Phys. Lett.,77A, 300.Google Scholar
  34. 34.
    Hehl, W. (1974).Gen. Rel. Grav.,4, 333.Google Scholar
  35. 35.
    Prasanna, A. R. (1975).Phys. Lett.,54A, 17.Google Scholar
  36. 36.
    Ellis, G. F. R. (1971).Gen. Rel. Grav.,2, 7.Google Scholar
  37. 37.
    Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space-Time, Cambridge University Press, London.Google Scholar
  38. 38.
    Weyssenhoff, J., and Raabe, A. (1947).Acta Phys. Pol.,9, 7.Google Scholar
  39. 39.
    Kramer, D., Stephanie, H., MacCallum, M., Herlt, E. (1980).Exact Solutions of Einstein's Field Equations, VEB Deutscher Verlag der Wissenschaften, Berlin.Google Scholar
  40. 40.
    Ftaclas, C. (1978). Dissertation, City Univèrsity of New York.Google Scholar
  41. 41.
    Ftaclas, C., and Cohen, J. M. (1978).Phys. Rev. D,18, 4373.Google Scholar
  42. 42.
    Lorenz, D. (1981).Gen. Rel. Grav.,13, 795.Google Scholar
  43. 43.
    Trautman, A. (1972).Bull. Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys.,20, 185.Google Scholar
  44. 44.
    Trautman, A. (1972).Bull. Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys.,20, 503.Google Scholar
  45. 45.
    Trautman, A. (1972).Bull Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys.,20, 895.Google Scholar
  46. 46.
    Trautman, A. (1973).Bull. Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys.,21, 345.Google Scholar
  47. 47.
    Ryan, M. P., and Shepley, L. C. (1975).Homogeneous Relativistic Cosmologies, Princeton University Press, Princeton.Google Scholar
  48. 48.
    King, A. R., and Ellis, G. F. R. (1973).Commun. Math. Phys.,31, 209.Google Scholar
  49. 49.
    Shikin, I. S. (1975).Zh. Eksp. Teor. Fiz.,68, 1538 [(1976).Sov. Phys.-JETP,41, 794].Google Scholar
  50. 50.
    Thorne, K. S. (1967).Astrophys. J.,148, 51.Google Scholar
  51. 51.
    Collins, C. B., and Ellis, G. F. R. (1979).Phys. Rep.,56(2), 65.Google Scholar
  52. 52.
    Nester, J. M., and Isenberg, J. (1977).Phys. Rev. D,15, 2078.Google Scholar
  53. 53.
    Maartens, R., and Nel, S. D. (1978).Commun. Math. Phys.,59, 273.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Dieter Lorenz
    • 1
  1. 1.FakultÄt für PhysikUniversitÄt KonstanzKonstanzGermany

Personalised recommendations