Letters in Mathematical Physics

, Volume 35, Issue 3, pp 197–211 | Cite as

Conformal characters and theta series

  • W. Eholzer
  • N. P. Skoruppa


We describe the construction of vector-valued modular forms transforming under a given congruence representation of the modular group SL(2, ℤ) in terms of theta series. We apply this general setup to obtain closed and easily computable formulas for conformal characters of rational models ofW-algebras.

Mathematics Subject Classifications (1991)

11F03 11F27 81R10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blumenhagen, R., Eholzer, W., Honecker, A., Hornfeck, K. and Hübel, R.: Coset realization of unifyingW-algebras, Preprint BONN-TH-94-11, DFTT-25/94, hepth-th/9406203,Internat. J. Modern Phys. (to appear).Google Scholar
  2. 2.
    Eholzer, W. and Skoruppa, N.-P.: Modular invariance and uniqueness of conformal characters, Preprint BONN-TH-94-16, MPI-94-67,Comm. Math. Phys. (to appear).Google Scholar
  3. 3.
    Frenkel, E., Kac, V., and Wakimoto, M.: Characters and fusion rules forW-algebras via quantized Drinfeld-Sokolov reduction,Comm. Math. Phys. 147, 295–328 (1992).Google Scholar
  4. 4.
    Batut, C., Bernardi, D., Cohen, H., and Olivier, M.:PARI-GP (1989), Université Bordeaux 1, Bordeaux.Google Scholar
  5. 5.
    Milnor, J. and Husemoller, D.:Symmetric Bilinear Forms, Springer, Berlin, Heidelberg, New York, 1973.Google Scholar
  6. 6.
    Kac, V.:Infinite Dimensional Lie Algebras and Groups, World Scientific, Singapore, 1989.Google Scholar
  7. 7.
    Nobs, A.: Die irreduziblen Darstellungen der Gruppen SL2(Zp), insbesondere SL2(Z 2) I,Comment. Math. Helv. 51, 465–489 (1976).Google Scholar
  8. 8.
    Nobs, A. and Wolfart, J.: Die irreduziblen Darstellungen der Gruppen SL2(Z p), insbesondere SL2(Z 2) II,Comment. Math. Helv. 51, 491–526 (1976).Google Scholar
  9. 9.
    Rocha-Caridi, A.: Vacuum vector representations of the Virasoro algebra, in S. Mandelstam and I. M. Singer (eds)Vertex Operators in Mathematics and Physics, MSRI Publications No. 3, Springer, Heidelberg, 1984.Google Scholar
  10. 10.
    Schoeneberg, B.:Elliptic Modular Functions, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 204, Springer, New York, Heidelberg, Berlin, 1974.Google Scholar
  11. 11.
    Vigneras, M.-F.:Arithmétique des algèbres de quaternions, Lecture Notes in Math. 800, Springer, Berlin, 1980.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • W. Eholzer
    • 1
  • N. P. Skoruppa
    • 2
  1. 1.Max-Planck-Institut für Mathematik BonnBonnGermany
  2. 2.UFR de Mathématiques et InformatiqueUniversité Bordeaux ITalenceFrance

Personalised recommendations