Combustion, Explosion and Shock Waves

, Volume 17, Issue 4, pp 423–429 | Cite as

One-dimensional stability of stationary compression and combustion waves

  • E. A. Dynin


Combustion Dynamical System Mechanical Engineer Combustion Wave Stationary Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. P. D'yakov, Zh. Eksp. Teor. Fiz.,27, No. 3 (1954).Google Scholar
  2. 2.
    S. V. Iordanskii, Prikl. Mat. Mekh.,21, No. 4 (1957).Google Scholar
  3. 3.
    M. Marduchov and A. J. Paully, Phys. Fluids,14, No. 2 (1971).Google Scholar
  4. 4.
    E. A. Kuznetsov, M. D. Spektor, and G. E. Fal'kovich, Pis'ma Zh. Eksp. Teor. Fiz.,30, No. 6 (1979).Google Scholar
  5. 5.
    G. I. Barenblatt and Ya. B. Zel'dovich, Prikl. Mat. Mekh.,21, No. 6 (1957).Google Scholar
  6. 6.
    G. I. Barenblatt, Similarity, Self-Similarity and Intermediate Asymptotics [in Russian], Gidrometeoizdat, Moscow (1978).Google Scholar
  7. 7.
    R. Courant and D. Hilbert, Methods of Mathematical Physics [Russian translation], Vol. 1, Gostekhteorizdat, Moscow (1951).Google Scholar
  8. 8.
    E. A. Dynin, in: Detonation. Physicochemical Transformations in Shock Waves [in Russian], OIKhF, Chernogolovka (1979).Google Scholar
  9. 9.
    L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media [in Russian], Gostekhteorizdat, Moscow (1954).Google Scholar
  10. 10.
    B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications in Gasdynamics [in Russian], Nauka, Moscow (1978).Google Scholar
  11. 11.
    R. W. Griffiths, R. S. Sandeman, and H. C. Hornung, J. Phys.,D 9, No. 12 (1976).Google Scholar
  12. 12.
    G. K. Tukmaev, V. G. Maslennikov, and E. V. Serova, Pis'ma, Zh. Tekh. Fiz.,6, No. 6 (1980).Google Scholar
  13. 13.
    W. Fickett, Am. J. Phys.,47, No. 12 (1979).Google Scholar
  14. 14.
    O. V. Rudenko and S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics [in Russian], Nauka, Moscow (1975).Google Scholar
  15. 15.
    A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov, Byull. Mosk. Gos. Univ. Sek. A,1, No. 6 (1937).Google Scholar
  16. 16.
    A. I. Vol'pert and S. I. Khudyaev, Analysis in a Class of Discontinuous Functions and the Equations of Mathematical Physics [in Russian], Nauka, Moscow (1975).Google Scholar
  17. 17.
    V. S. Baushev, V. N. Vilyunov, and A. M. Timonin, Prikl. Mat. Mekh.,44, No. 1 (1980).Google Scholar
  18. 18.
    A. P. Aldushin, Ya. B. Zel'dovich, and S. I. Khudyaev, Fiz. Goreniya Vzryva,15, No. 6 (1979).Google Scholar
  19. 19.
    G. I. Kanel', Mat. Sb.,59, 101 (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • E. A. Dynin

There are no affiliations available

Personalised recommendations