Letters in Mathematical Physics

, Volume 32, Issue 4, pp 347–356 | Cite as

Functional integral via functional equation

  • M. D. Missarov


Discretization ofp-adic Grassmann-valued\((\bar \psi \psi )^2 \)-model leads to a hierarchical model with the Hamtilonian given by a nontrivial functional integral over the Grassmann variables. Using renormalization group arguments, we reduce the calculation of this integral to a functional equation. The problem of the convergence of the perturbation expansion of this integral, realized as a small-divisors problem, is investigated.

Mathematics Subject Classifications (1991)

82A05 81T99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bleher, P. M. and Sinai, Ya. G.,Comm. Math. Phys. 33, 23 (1973).Google Scholar
  2. 2.
    Collet, P. and Eckmann, J. P.,A Renormalization Group Analysis of the Hierarchical Model in Statistical Mechanics, Lecture Notes in Physics 74, Springer-Verlag, New York, 1978.Google Scholar
  3. 3.
    Volovich, I. V.,Classical Quantum Gravity,4, 183 (1987).Google Scholar
  4. 4.
    Freund, P. G. and Olson, M.,Phys. Lett. 199B, 186 (1987).Google Scholar
  5. 5.
    Freund, P. G. and Witten, E.,Phys. Lett. 199B, 191 (1987).Google Scholar
  6. 6.
    Lerner, E. U. and Missarov, M. D.,Teoret. Mat. Fiz. 78, 248 (1989) (in Russian).Google Scholar
  7. 7.
    Lerner, E. U. and Missarov, M. D.,Comm. Math. Phys. 121, 35 (1989).Google Scholar
  8. 8.
    Missarov, M. D. in Ya. G. Sinai (ed),Dynamical Systems and Statistical Mechanics, Adv. Soviet Math. Vol. 3, Amer. Math. Soc., Providence, R. I., 1991, p. 143.Google Scholar
  9. 9.
    Gawedzki, K. and Kupiainen, A.,Comm. Math. Phys. 102, 1 (1985).Google Scholar
  10. 10.
    Feldman, J., Magnen, J, Rivasseau, V. and Seneor, R., Comm. Math. Phys.103, 67 (1986).Google Scholar
  11. 11.
    Dorlas, C. T.,Comm. Math. Phys. 136, 169 (1991).Google Scholar
  12. 12.
    Berezin, F. A.,The Method of Second Quantization, Academic Press, New York, 1966.Google Scholar
  13. 13.
    Arnold, V. I.,Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, Berlin, 1983.Google Scholar
  14. 14.
    Lerner, E. U. and Missarov, M. D., Submitted toJ. Stat. Phys. (1993).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • M. D. Missarov
    • 1
  1. 1.Department of Applied MathematicsKazan State UniversityKazanRussia

Personalised recommendations