Advertisement

Letters in Mathematical Physics

, Volume 32, Issue 4, pp 331–346 | Cite as

Mixed quantum mechanical periodic and potential wall problem

  • Paolo Vanini
Article

Abstract

We consider the Schrödinger equation with an even-square integrable potential of period one on the negative real axis and a wall potential of heighta > 0 on the positive real axis. The spectrum of this Schrödinger equation is determined and it is proved that bounded solutions never exist if the energyE < a is lying in a gap of the periodic spectrum.

Mathematics Subject Classification (1991)

81Q05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gel'fand, I. M. and Levitan, B. M., On the determination of a differential equation from its spectral function,Amer. Math. Soc. Trans. (2)1, 253–304 (1955).Google Scholar
  2. 2.
    Deift, P. and Trubowitz, E., Inverse scattering on the line,Comm. Pure Appl. Math. 32, 121–251 (1979).Google Scholar
  3. 3.
    Isaacson, E. L. and Trubowitz, E., The inverse Sturm-Liouville problem I,Comm. Pure Appl. Math. 36, 767–783 (1983).Google Scholar
  4. 4.
    Isaacson, E. L. and Trubowitz, E., The inverse Sturm-Liouville problem I,Comm. Pure Appl. Math. 37, 1–11 (1984).Google Scholar
  5. 5.
    Isaacson, E. L. and Trubowitz, E., The inverse Sturm-Liouville problem I,Comm. Pure Appl. Math. 37, 255–267 (1984).Google Scholar
  6. 6.
    Marchenko, V. A. and Ostrovskii, I. V., A characterization of the spectrum of Hill's operator,Math. USSR-Sbornik 97, 493–554 (1975).Google Scholar
  7. 7.
    McKean, H. P. and Trubowitz, E., Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points,Comm. Pure Appl. Math. 29, 143–226 (1976).Google Scholar
  8. 8.
    Pöschel, J. and Trubowitz, E.,Inverse Spectral Theory, Academic Press, Orlando, 1987.Google Scholar
  9. 9.
    Reed, M. and Simon, B.,Methods of Modern Mathematical Physics, Vol. IV, Academic Press, New York, 1978.Google Scholar
  10. 10.
    Ralston, J. and Trubowitz, E., Isospectral sets for boundary value problems on the unit interval,Ergodic Theory Dynamical Systems 8, 301–358 (1988).Google Scholar
  11. 11.
    Trubowitz, E., The inverse problem for periodic potentials,Comm. Pure Appl. Math. 30, 321–337 (1977).Google Scholar
  12. 12.
    Schechter, M.,Operator Methods in Quantum Mechanics, North-Holland, Amsterdam, 1981.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Paolo Vanini
    • 1
  1. 1.Mathematik DepartementETH ZürichZürichSwitzerland

Personalised recommendations