Skip to main content

Defining quantum dynamical entropy

Abstract

We propose an elementary definition of the dynamical entropy for a discrete-time quantum dynamical system. We apply our construction to classical dynamical systems and to the shift on a quantum spin chain. In the first case, we recover the Kolmogorov-Sinai invariant and, for the second, we find the mean entropy of the invariant state plus the logarithm of the dimension of the single-spin space.

This is a preview of subscription content, access via your institution.

References

  1. Cornfeld, I. P., Fomin, S. V., and Sinai, Ya. G.,Ergodic Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1982.

    Google Scholar 

  2. Ohya, M. and Petz, D.,Quantum Entropy and Its Use, Springer-Verlag, Berlin, Heidelberg, New York, 1993.

    Google Scholar 

  3. Emch, G. G., Positivity of theK-entropy on non-AbelianK-flows,Z. Wahrscheinlichkeitstheorie Verw. Gebiete 29, 241–252 (1974).

    Google Scholar 

  4. Connes, A. and Størmer, E., Entropy for automorphisms of II1 von Neumann algebras,Acta Math. 134, 289–306 (1975).

    Google Scholar 

  5. Connes, A., Narnhofer, H., and Thirring, W., Dynamical entropy ofC *-algebras and von Neumann algebras,Comm. Math. Phys. 112, 691–719 (1987).

    Google Scholar 

  6. Sauvageot, J.-L. and Thouvenot, J.-P., Une nouvelle définition de l'entropie dynamique des systèmes non commutatifs,Comm. Math. Phys. 145, 411–423 (1992).

    Google Scholar 

  7. Lindblad, G., Non-Markovian stochastic processes and their entropy,Commun. Math. Phys. 65, 281–294 (1979), and Dynamical entropy for quantum systems, inQuantum Probability and Applications III, Lecture Notes in Math. 1303, Springer-Verlag, Berlin, Heidelberg, New York, 1988, pp. 183–191.

    Google Scholar 

  8. Fannes, M., Nachtergaele, B., and Werner, R. F., Finitely correlated states on quantum spin chains,Comm. Math. Phys. 144, 443–490 (1992).

    Google Scholar 

  9. Wehrl, A., General properties of entropy,Rev. Modern Phys. 50, 221–260 (1978).

    Google Scholar 

  10. Araki, H. and Lieb, E. H., Entropy inequalities,Comm. Math. Phys. 18, 160–170 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alicki, R., Fannes, M. Defining quantum dynamical entropy. Lett Math Phys 32, 75–82 (1994). https://doi.org/10.1007/BF00761125

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00761125

Mathematics Subject Classifications (1991)

  • 46L55
  • 28D20
  • 82B10