Letters in Mathematical Physics

, Volume 32, Issue 1, pp 63–74 | Cite as

Dynamical entropy of generalized quantum Markov chains

  • Yong Moon Park


We compute the dynamical entropy in the sense of Connes, Narnhofer, and Thirring of shift automorphism of generalized quantum Markov chains as defined by Accardi and Frigerio. For any generalized quantum Markov chain defined via a finite set of conditional density amplitudes, we show that the dynamical entropy is equal to the mean entropy.

Mathematics Subject Classifications (1991)

46L55 28D20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Accardi, L. and Frigerio, A., Markov cocycles,Proc. R. Ir. Acad. 83A, 251–269 (1983).Google Scholar
  2. 2.
    Accardi, L. and Watson, G. S., Quantum random walks, inLecture Notes in Math. 1936, Springer-Verlag, New York, 1989, pp. 73–78.Google Scholar
  3. 3.
    Besson, O., On the entropy of quantum Markov states, inLecture Notes in Math. 1136, Springer-Verlag, New York, 1985, pp. 81–89.Google Scholar
  4. 4.
    Bratteli, O. and Robinson, D. W.,Operator Algebras and Quantum Statistical Mechanics. I, II, Springer-Verlag, New York, 1981.Google Scholar
  5. 5.
    Connes, A., Narnhofer, H., and Thirring, W., Dynamical entropy ofC *-algebras and von Neumann algebras,Comm. Math. Phys. 112, 691–719 (1987).Google Scholar
  6. 6.
    Connes, A. and Størmer, E., Entropy of automorphisms ofII 1 von Neumann algebras,Acta Math. 134, 289–306 (1975).Google Scholar
  7. 7.
    Kolmogorov, A. N.,Dokl. Akad. Nauk. 119, 861 (1958).Google Scholar
  8. 8.
    Narnhofer, H. and Thirring, W., Dynamical entropy of quasi-free automorphisms,Lett. Math. Phys. 14, 89–96 (1987).Google Scholar
  9. 9.
    Narnhofer, H. and Thirring, W., Dynamical entropy of quantum systems and their Abelian counterpart, to appear.Google Scholar
  10. 10.
    Ohya, M. and Petz, D.,Quantum Entropy and Its Use, Springer-Verlag, New York, 1993.Google Scholar
  11. 11.
    Park, Y. M. and Shin, H. H., Dynamical entropy of quasi-local algebras in quantum statistical mechanics,Comm. Math. Phys. 144, 149–161 (1992).Google Scholar
  12. 12.
    Park, Y. M. and Shin, H. H., Dynamical entropy of space translations of CAR and CCR algebras with respect to quasi-free states,Comm. Math. Phys. 152, 497–537 (1993).Google Scholar
  13. 13.
    Quasthoff, U., Shift automorphisms of the hyperfinite factor,Math. Nachtrichten 131, 101–106 (1987).Google Scholar
  14. 14.
    Sinai, Ya. G.,Dokl. Akad. Nauk., 768 (1959).Google Scholar
  15. 15.
    Størmer, E., Entropy of some automorphisms of theII 1-factor of the free group in infinite number of generators,Invent. Math. 110, 63–73 (1992).Google Scholar
  16. 16.
    Størmer, E., Entropy in operator algebra, Preprint (1992).Google Scholar
  17. 17.
    Størmer, E. and Voiculescu, D., Entropy of Bogoliubov automorphisms of the canonical anticommutation relations,Comm. Math. Phys. 133, 521–542 (1990).Google Scholar
  18. 18.
    Walters, P.,An Introduction to Ergodic Theory, Graduate Texts in Math. 79, Springer-Verlag, New York, 1982.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Yong Moon Park
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations