Skip to main content
Log in

Quantum Riemann surfaces III. the exceptional cases

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss quantum deformations of Riemann surfaces whose fundamental groups are Abelian (the exceptional Riemann surfaces). We prove uniformization theorems, state deformation estimates, and study the dependence of quantum Riemann surfaces on the deformation parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berezin, F. A., General concept of quantization,Comm. Math. Phys. 40, 153–174 (1975).

    Google Scholar 

  2. Bordeman, M., Hoppe, J., Schaller, P., and Schlichenmaier, M., gl(∞) and geometric quantization,Comm. Math. Phys. 138, 209–244 (1991).

    Google Scholar 

  3. Bordeman, M., Meinrenken, E., and Schlichenmaier, M., Toeplitz quantization of Kähler manifolds and gl(N), N → ∞, Preprint.

  4. Borthwick, D., Klimek, S., Lesniewski, A., and Rinaldi, M., Super Toeplitz operators and non-perturbative deformation quantization of supermanifolds,Comm. Math. Phys. 153, 49–76 (1993).

    Google Scholar 

  5. Borthwick, D., Klimek, S., Lesniewski, A., and Rinaldi, M., Matrix Cartan superdomains, Super Toeplitz operators and deformation quantization, to appear.

  6. Borthwick, D., Klimek, S., Lesniewski, A., and Rinaldi, M., Supersymmetry and Fredholm modules over quantized spaces, to appear.

  7. Borthwick, D., Lesniewski, A., and Upmeier, H., Non-perturbative deformation quantization of Cartan domains,J. Funct. Anal. 113, 153–176 (1993).

    Google Scholar 

  8. Coburn, L. A., Deformation estimates for the Berezin-Toeplitz quantization,Comm. Math. Phys. 149, 415–424 (1992).

    Google Scholar 

  9. Connes, A., Non-commutative differential geometry,Publ. Math. IHES,62, 94–144 (1986).

    Google Scholar 

  10. Conway, J.,Subnormal Operators, Pitman, London, 1981.

    Google Scholar 

  11. Dixmier, J., ℂ*-Algebras, North-Holland, Amsterdam, 1977.

  12. Farkas, H. M. and Kra, I.,Riemann surfaces, Springer, Berlin, 1980.

    Google Scholar 

  13. Klimek, S. and Lesniewski, A., Quantum Riemann surfaces, I. The unit disc,Comm. Math. Phys. 146, 103–122 (1992).

    Google Scholar 

  14. Klimek, S., and Lesniewski, A., Quantum Riemann surfaces, II. The discrete series,Lett. Math. Phys. 24, 125–139 (1992).

    Google Scholar 

  15. Klimek, S. and Lesniewski, A., Quantum Riemann surfaces, IV. Equivariant quantization, to appear.

  16. Rieffel, M. A., Non-commutative tori - a case study of non-commutative differentiable manifolds,Contemp. Math. 105, 191–211 (1990).

    Google Scholar 

  17. Rieffel, M. A., Quantization and ℂ*-algebras, preprint.

  18. Sniatycki, J.,Geometric Quantization and Quantum Mechanics, Springer, Berlin, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NSF grant DMS-9206936.

Supported in part by DOE grant DE-FG02-88ER25065.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimek, S., Leśniewski, A. Quantum Riemann surfaces III. the exceptional cases. Lett Math Phys 32, 45–61 (1994). https://doi.org/10.1007/BF00761123

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00761123

Mathematics Subject Classification (1991)

Navigation