Advertisement

Letters in Mathematical Physics

, Volume 29, Issue 1, pp 49–54 | Cite as

Schlesinger transforms for the discrete painlevé IV equation

  • K. M. Tamizhmani
  • B. Grammaticos
  • A. Ramani
Article

Abstract

We derive an auto-Bäcklund transformation for the discrete Painlevé IV equation and use it in order to derive Schlesinger transformations for the same equation as well as particular solutions in perfect analogy to the continuous case.

Mathematics Subject Classifications (1991)

33E30 39A10 58F07 58F08 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ramani, A., Grammaticos, B., and Hietarinta, J.,Phys. Rev. Lett. 67, 1829 (1991).Google Scholar
  2. 2.
    Grammaticos, B., Ramani, A., and Papageorgiou, V.,Phys. Rev. Lett. 67, 1825 (1991).Google Scholar
  3. 3.
    Ince, E. L.,Ordinary Differential Equations, Dover, New York, 1956.Google Scholar
  4. 4.
    Painlevé, P.,Acta Math. 25, 1 (1902).Google Scholar
  5. 5.
    Grammaticos, B. and Ramani, A., Discrete Painlevé equations: Derivation and properties, contribution to the NATO ASI, Exeter, July 1992.Google Scholar
  6. 6.
    Fokas, A. S. and Ablowitz, M. J.,J. Math. Phys. 23, 2033 (1982).Google Scholar
  7. 7.
    Jimbo, M. and Miwa, T.,Physica D2, 407 (1981);D4, 26 (1981).Google Scholar
  8. 8.
    Fokas, A. S., Mugan, U., and Ablowitz, M. J.,Physica D30, 247 (1988).Google Scholar
  9. 9.
    Gromak, V. A. and Lukashevich, N. A.,The Analytic Solutions of the Painlevé Equations, Universitetskoye Publishers, Minsk, 1990 (in Russian).Google Scholar
  10. 10.
    Ramani A. and Grammaticos, B.,J. Phys. A 25, L633 (1992).Google Scholar
  11. 11.
    Ramani, A., Grammaticos, B., Papageorgiou, V., Nijhoff, F., and Satsuma, J., Linearization and special solutions of the discretePainlevé III equation, submitted for publication.Google Scholar
  12. 12.
    Ramani, A., Grammaticos, B., and Karra, G.,Physica A81, 115 (1992).Google Scholar
  13. 13.
    Abramowitz, M. and Stegun, I.,Handbook of Mathematical Functions, Dover, New York, 1972.Google Scholar
  14. 14.
    Joshi, N., Bartoclay, D., and Halburd, R. G.,Lett. Math. Phys. 26, 123 (1992).Google Scholar
  15. 15.
    Papageorgiou, V. G., Nijhoff, F. W., Grammaticos, B., and Ramani, A.,Phys. Lett. A164, 57 (1992).Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • K. M. Tamizhmani
    • 1
  • B. Grammaticos
    • 2
  • A. Ramani
    • 3
  1. 1.Departement of MathematicsPondicherry UniversityPondicherryIndia
  2. 2.LPN, Université Paris VIIParisFrance
  3. 3.CPT, Ecole PolytechniquePalaiseauFrance

Personalised recommendations