Skip to main content
Log in

Surface layers in general relativity and their relation to surface tensions

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

For a thin shell, the intrinsic 3-pressure will be shown to be analogous to -A, whereA is the classical surface tension: First, interior and exterior Schwarzschild solutions will be matched together such that the surface layer generated at the common boundary has no gravitational mass; then its intrinsic 3-pressure represents a surface tension fulfilling Kelvin's relation between mean curvature and pressure difference in the Newtonian limit. Second, after a suitable definition of mean curvature, the general relativistic analog to Kelvin's relation will be proven to be contained in the equation of motion of the surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lanczos, K. (1924).Ann. Phys. (Leipzig),74(4), 518.

    Google Scholar 

  2. Papapetrou, A., and Treder, H. (1959).Math. Nachr.,20, 53.

    Google Scholar 

  3. Dautcourt, G. (1963/64).Math. Nachr.,27, 277.

    Google Scholar 

  4. Israel, W. (1966).Nuovo Cimento B,44, 1.

    Google Scholar 

  5. Papapetrou, A., and Hamoui, A. (1968).Ann. Inst. H. Poincare,A9, 179.

    Google Scholar 

  6. Kuhař, K. (1968).Czech. J. Phys.,B18, 435.

    Google Scholar 

  7. Boulware, D. (1973).Phys. Rev. D,8, 2363.

    Google Scholar 

  8. Denisov, V. I. (1972).J. Exp. Teor. Phys.,62, 1990 [Engl. transi. (1972)Sov. Phys. JETP,35, 1038.

    Google Scholar 

  9. Lake, K. (1981).Lett. Nuovo Cim. ser. 2,30, 186.

    Google Scholar 

  10. Schmidt, H. J. (1983). Contributed Papers, GR10, Padova, 4–9 July 1983, Vol. 1, B. Bertofti, ed. p. 339.

  11. Urbandtke, H. (1912).Acta Physica Austriaca,35, 1.

    Google Scholar 

  12. Frehland, E. (1912).Ann. Phys. (Leipzig),28(7), 91.

    Google Scholar 

  13. Lake, K. (1979).Phys. Rev. D,19, 2847.

    Google Scholar 

  14. Morgan, L., and Morgan, T. (1970).Phys. Rev. D,2, 2756.

    Google Scholar 

  15. Voorhees, B. (1972).Phys. Rev. D,5, 2413.

    Google Scholar 

  16. Einstein, A. (1939).Ann. Math.,40, 922.

    Google Scholar 

  17. Gottlöber, S. (1980).Diss. A, Akad. Wiss. Berlin.

  18. Israel, W., and Stewart, J. (1980).Gen. Rel. Grav. II, A. Held, ed. (Plenum, New York), p. 491.

    Google Scholar 

  19. Neugebauer, G. (1980).Relativistische Thermodynamik (Akademierverlag, Berlin).

    Google Scholar 

  20. Ono, S., and Kondo, S. (1960).Handbuch der Physik, Vol. 10, S. Flügge, ed. (Springer Verlag, Berlin), p. 134.

    Google Scholar 

  21. López, C. (1981).Nuovo Cimento B,66, 17.

    Google Scholar 

  22. Krasilnikov, V. A., and Pavlov, V. I. (1972).Vestn. Univ. Moskau (III),27, 235.

    Google Scholar 

  23. Thomson, W. (Lord Kelvin) (1858).Proc. R. Soc. London,9, 255.

    Google Scholar 

  24. Taub, A. (1980).J. Math. Phys.,21, 1423.

    Google Scholar 

  25. Cohen, M., and Cohen, J. (1971).Relativity and Gravitation, C. Kuper, ed. (Gordon/Breach, New York), p. 99.

    Google Scholar 

  26. Maeda, K., and Sato, H. (1983).Progr. Theor. Phys.,70, 772.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, H.J. Surface layers in general relativity and their relation to surface tensions. Gen Relat Gravit 16, 1053–1061 (1984). https://doi.org/10.1007/BF00760644

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00760644

Keywords

Navigation