General Relativity and Gravitation

, Volume 9, Issue 4, pp 353–371 | Cite as

Classical gravity with higher derivatives

  • K. S. Stelle
Research Articles

Abstract

Inclusion of the four-derivative terms ∫R μν R μν (−g)1/2 and ∫R2(−g)1/2 into the gravitational action gives a class of effectively multimass models of gravity. In addition to the usual massless excitations of the field, there are now, for general amounts of the two new terms, massive spin-two and massive scalar excitations, with a total of eight degrees of freedom. The massive spin-two part of the field has negative energy. Specific ratios of the two new terms give models with either the massive tensor or the massive scalar missing, with correspondingly fewer degrees of freedom. The static, linearized solutions of the field equations are combinations of Newtonian and Yukawa potentials. Owing to the Yukawa form of the corrections, observational evidence sets only very weak restrictions on the new masses. The acceptable static metric solutions in the full nonlinear theory are regular at the origin. The dynamical content of the linearized field is analyzed by reducing the fourth-order field equations to separated second-order equations, related by coupling to external sources in a fixed ratio. This analysis is carried out into the various helicity components using the transverse-traceless decomposition of the metric.

Keywords

Field Equation Massive Scalar Nonlinear Theory Weak Restriction Linearize Solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weyl, H., (1921).Raum-Zeit-Materie, 4th ed. (Springer-Verlag, Berlin) [English translalation (1952)Space-Time-Matter (Dover, New York], Chap. IV; Eddington, A. (1924).The Mathematical Theory of Relativity, 2nd ed. (Cambridge University Press, London), Chap. IV. Later suggestions wereGoogle Scholar
  2. 2.
    Lanczos, (1938).Ann Math.,39, 842; Buchdahl, H. A. (1948).Proc. Edinburgh Math. Soc.,8, 89.Google Scholar
  3. 3.
    Pais, A., and Uhlenbeck, G. E. (1950).Phys. Rev.,79, 145.Google Scholar
  4. 4.
    Utiyama, R., and De Witt, B. (1962).J. Math. Phys.,3, 608; DeWitt, B. S. (1965).Dynamical Theory of Groups and Fields (Gordon and Breach, New York), Chap. 24; Sakharov, A. D. (1967).Dokl. Akad. Nauk SSSR,177, 70 [(1968).Sov. Phys. Dokl.,12, 1040.]Google Scholar
  5. 5.
    De Witt, B. S. (1975).Phys. Rep.,19C, 295.Google Scholar
  6. 6.
    't Hooft, G., and Veltman, M. (1974).Ann. Inst. Henri Poincaré 20, 69; Deser, S., and van Nieuwenhuizen, P. (1974).Phys. Rev. D,10, 401, 411; Deser, S., van Nieuwenhuizen, P., and Tsao, H. S. (1974).Phys. Rev. D 10, 3337.Google Scholar
  7. 7.
    Stelle, K. S. (1977)Phys. Rev. D. 16, 953.Google Scholar
  8. 8.
    Pechlaner, E., and Sexl, R. (1966).Commun. Math. Phys.,2, 165; 3rd paper in [6]; Havas, P., (1977). Temple University preprint.Google Scholar
  9. 9.
    Long, D. R. (1976).Nature,260, 417.Google Scholar
  10. 10.
    Mikkelsen, D. R., and Newman, M. J. California Institute of Technology preprint No. OAP-475.Google Scholar
  11. 11.
    Rivers, R. J. (1964).Nuovo Cimento 34, 387.Google Scholar
  12. 12.
    van Nieuwenhuizen, P. (1973).Nucl. Phys.,B60, 478.Google Scholar
  13. 13.
    Ostrogradski, M. (1850).“Mémoires sur les équations differentielles relatives au problème des isopérimètres,” Mem. Acad. St. Petersbourg,VI4, 385; see also Whittaker, E. T. (1937).Analytical Dynamics of Particles and Rigid Bodies, 4th ed. (Cambridge University Press, London); and also [3].Google Scholar
  14. 14.
    Deser, S. (1970).Gen. Rel. Grav.,1, 9.Google Scholar
  15. 15.
    Arnowitt, R., Deser, S., and Misner, C. W. (1962), inGravitation, an introduction to current research, ed. Witten, L. (Wiley, New York).Google Scholar
  16. 16.
    Matthews, P. T. (1949).Proc. Cambridge Phil. Soc.,45, 441.Google Scholar
  17. 17.
    Coleman, S. (1970). “Acausality” inSubnuclear Phenomena, ed. Zichichi, A. (Academic Press, New York).Google Scholar
  18. 18.
    Lee, T. D., and Wick, G. C. (1969).Nucl. Phys.,B9, 209; (1969).B10, 1.Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • K. S. Stelle
    • 1
  1. 1.Department of PhysicsBrandeis UniversityWaltham

Personalised recommendations