General Relativity and Gravitation

, Volume 9, Issue 2, pp 175–181 | Cite as

Orthonormal tetrads and the charged fluid in general relativity

  • G. G. Asgekar
  • T. H. Date
Research Articles

Abstract

A space-time filled with the self-gravitating charged fluid with constant electric permitivity and constant magnetic permeability is investigated. On expressing the stress-energy tensor in terms of an orthonormal tetrad, the equations of motion and Maxwell equations are formulated. In case of the geodesic flow, the conditions for divergence-free electric and magnetic fields are obtained. It is shown that the space-time permeated by the charged fluid with the electric field orthogonal to the magnetic one is embedded in 5-dimensional flat class-one space-time if and only if the electromagnetic energy flux vector vanishes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Einstein, A. (1929).S. B. Preuss. Akad. Wiss., No.l, 2.Google Scholar
  2. 2.
    Levi-Civita, T. (1950).A simplified presentation of Einstein's unified field equations (Blackie and Sons, London).Google Scholar
  3. 3.
    Weyl, H. (1950).Phys. Rev.,77, 699.Google Scholar
  4. 4.
    McCrea, W. H., and Mikhail, F. I. (1956).Proc. Roy. Soc. London A,235, 11.Google Scholar
  5. 5.
    Newman, E., and Penrose, R. (1962).J. Math. Phys.,3, 566.Google Scholar
  6. 6.
    Newman, E., and Penrose, R. (1965).J. Math. Phys.,6, 902.Google Scholar
  7. 7.
    Debever, R. (1964).Lecture notes (Brussels University).Google Scholar
  8. 8.
    Ehlers, J. (1965). Lecture at London Relativity Conference.Google Scholar
  9. 9.
    Ellis, G. F. R. (1967).J. Math. Phys.,8, 1171.Google Scholar
  10. 10.
    Shaha, R. R. (1974). Ph.D. Thesis, Shivaji University, Kolhapur, India.Google Scholar
  11. 11.
    Barnes, A. (1973).Gen. Rel. Grav.,4, 105.Google Scholar
  12. 12.
    Krause, J. (1975).Int. J. Theor. Phys.,12, 35.Google Scholar
  13. 13.
    Date, T. H. (1972).J. Shivaji Univ.,5, 123.Google Scholar
  14. 14.
    Date, T. H. (1976).Ann. Inst. Henri Poincare,XXlV, 417.Google Scholar
  15. 15.
    Asgekar, G. G., and Date, T. H. (1977).J. Math. Phys.,18, 738.Google Scholar
  16. 16.
    Date, T. H., and Patil, N. P. (1977). Communicated to GRG.Google Scholar
  17. 17.
    Taub, A. H. (1970).Collogues, Internationaux du Centre National de la Recherche Scientifique,184, 189.Google Scholar
  18. 18.
    Greenberg, P. J. (1970).J. Math. Anal. Appl,29, 647.Google Scholar
  19. 19.
    Greenberg, P.J. (1970).J. Math. Anal. Appl,30, 128.Google Scholar
  20. 20.
    Asgekar, G. G. (1977). Ph.D. Thesis, Shivaji University, India.Google Scholar
  21. 21.
    Lichnerowicz, A. (1967).Relativistic Hydrodynamics and Magnetohydrodynamics (W. A. Benjamin, New York).Google Scholar
  22. 22.
    Pandey, S. N., and Kansal, I. D. (1969).Proc. Camb. Phil. Soc.,66, 153.Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • G. G. Asgekar
    • 1
  • T. H. Date
    • 1
  1. 1.Department of MathematicsShivaji UniversityKolhapurIndia

Personalised recommendations