General Relativity and Gravitation

, Volume 9, Issue 2, pp 101–121 | Cite as

The problem of scalar field theory in curved space-time

  • Mario Castagnino
Research Articles


It is demonstrated that (1) there exist infiniteG1 that satisfy Lichnerowicz's conditions (L conditions) in a globally hyperbolic manifold; and, (2) there is noG1 in an expanding universe that would satisfy those conditions and that would behave as the ordinary Δ1 of flat space whenx → x′. The author thinks that these results present a serious problem for finding a semiclassical theory of scalar field in curved space-time.


Manifold Field Theory Scalar Field Differential Geometry Hyperbolic Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basombrio, F. G. (1975). Private communication, submitted toAnn, Inst. H. Poincaré.Google Scholar
  2. 2.
    Berger, M., Gauduchon, P., and Mazet, E. (1971).Le spectre d'une variété Riemamiene (Springer Verlag, Berlin), p. 141.Google Scholar
  3. 3.
    Börner, G., and Dürr, H. P. (1969).Nuovo Cimento,44, 669.Google Scholar
  4. 4.
    Castagnino, M. (1969).C.R. Acad. Sci. Paris,268, 1157.Google Scholar
  5. 5.
    Castagnino, M. (1974). These d'Etat, Université de Paris.Google Scholar
  6. 6.
    Castagnino, M., Verbeure, A., and Weder, R. (1975).Nuovo Cimento,26B, 396.Google Scholar
  7. 7.
    Cernikov, N. A., and Tagirov, E. A. (1968).Ann. Inst. Henri Poincaré,IX, 106.Google Scholar
  8. 8.
    Chevalerier, M. (1975). Private communication, submitted toAnn. Inst. H. Poincaré.Google Scholar
  9. 9.
    Combet, E. (1965).Sem. Phys. Math. (College de France).Google Scholar
  10. 10.
    Geroch, R. (1970).J. Math. Phys.,11, 437.Google Scholar
  11. 11.
    Lichnerowicz, A. (1961).Inst. Haut. Et. Sci. Publ. Math. No. 10.Google Scholar
  12. 12.
    Lichnerowicz, A. (1964).Ann. Inst. Henri Poincaré,3, 233.Google Scholar
  13. 13.
    Lichnerowicz, A. (1964).Bull. Soc. Math. Fr.,92, 11.Google Scholar
  14. 14.
    Lichnerowicz, A. (1964).Conférence internationale sur les théories relativistes de la gravitation Warszawa et Jabłonna, 1963 (Gauthier-Villar, Paris), p. 177.Google Scholar
  15. 15.
    Moreno, C. (1975). These d'Etat, Université Claude Bernard, Lyon.Google Scholar
  16. 16.
    Nachtmann, O. (1967).Commun. Math. Phys.,6, 1.Google Scholar
  17. 17.
    Parker, L. (1969).Phys. Rev.,183, 1057.Google Scholar
  18. 18.
    Parker, L. (1976). Quantized Fields and Particle Creation in Curved Space-Time,” University of Wisconsin-Milwaukee, Report No. UWM-4867-76-1.Google Scholar
  19. 19.
    Rideau, G. (1965).C.R. Acad. Sci. Paris,260, 2719.Google Scholar
  20. 20.
    Ruffini, R., and Bonazzola, S. (1969).Phys. Rev.,187, 1767.Google Scholar
  21. 21.
    Schweber, S. S. (1962).An introduction to relativistic quantum field theory (Harper and Row, New York).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Mario Castagnino
    • 1
  1. 1.Mathematics Department, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Buenos AiresBuenos AiresArgentina

Personalised recommendations