General Relativity and Gravitation

, Volume 16, Issue 10, pp 955–978 | Cite as

The quantization of the relativistic string

  • Donald C. Salisbury
Research Articles


The classical field-dependent parametrization covariant Hamiltonian formulation of the open and the closed string is discussed. The formalism is not applicable to the open string. A conformally covariant formalism is developed for the open string. The Rohrlich gauge conditions are justified and applied. The parametrization of classical solutions is not uniquely fixed; the generators of rigid time translation in the parameter space remain first class. The constraints and gauge conditions are taken into account in the quantum theory as conditions on physical states. The required invariance of physical states under rigid displacement of parameter time leads to a mass superselection rule. The set of physical string quantum states is analogous to the set of states constructed by Di Vecchia, Del Guidice, and Fubini. A recursive construction is presented which permits the counting of physical states of any given mass, spin, and parity. Physical states lie on linearly rising Regge trajectories with one universal slope. The intercept of the leading trajectory is constrained only by the requirement that there be no tachyonic physical states. The quantization is carried out in four space-time dimensions.


Open String Gauge Condition Closed String Hamiltonian Formulation Covariant Formalism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nambu, Y. (1969). Proceedings of the International Conference on Symmetries and Quark Models, Wayne State University.Google Scholar
  2. 2.
    Goto, T. (1971).Progr. Theor. Phys.,46, 1560.Google Scholar
  3. 3.
    Nielsen, H. (1970).15th Conference on High Energy Physics, Kiev.Google Scholar
  4. 4.
    Susskind, L. (1970).Nuovo Cimento,69, 210.Google Scholar
  5. 5.
    Sherk, J. (1975).Rev. Mod. Phys.,47, 123.Google Scholar
  6. 6.
    Rebbi, C. (1974).Phys. Rep.,C12, 1.Google Scholar
  7. 7.
    Mandelstam, S. (1974).Phys. Rep.,C13, 260.Google Scholar
  8. 8.
    Marinov, M. S. (1977).Sov. Phys. Usp.,20, 179.Google Scholar
  9. 9.
    Rohrlich, F. (1975).Phys. Rev. Lett.,34, 842.Google Scholar
  10. 10.
    Rohrlich, F. (1976).Nucl. Phys.,B112, 177.Google Scholar
  11. 11.
    Rohrlich, F. (1977).Nuovo Cimento,37A, 242.Google Scholar
  12. 12.
    Di Vecchia, P., Del Guidice, E., and Fubini, S. (1973).,Ann. Phys. (N.Y.),70, 378.Google Scholar
  13. 13.
    Salisbury, D. C., and Sundermeyer, K. (1981).Nucl Phys.,B191, 260.Google Scholar
  14. 14.
    Salisbury, D. C., and Sundermeyer, K. (1983).Phys. Rev.,D15, 740.Google Scholar
  15. 15.
    Bergman, P. G. (1962).Encyclopedia of Physics Vol. IV, S. Flügge, ed. (Springer, Berlin).Google Scholar
  16. 16.
    Dirac, P. A. M. (1964).Lectures on Quantum Mechanics, Belfer Graduate School Monograph 2 (Yeshiva University, New York).Google Scholar
  17. 17.
    Hanson, A., Regge, T., and Teitelboim, C. (1976).Constrained Hamiltonian Systems, (Acad. Naz. d. Lincei).Google Scholar
  18. 18.
    Salisbury, D. C., and Bergmann, P. G. (1978). Quantization of the relativistic closed string, Syracuse University Preprint.Google Scholar
  19. 19.
    Wick, G. C., Wightman, A. S., and Wigner, E. P. (1952).Phys. Rev.,88, 101.Google Scholar
  20. 20.
    Goddard, P., and Thorn, C. B. (1972).Phys. Lett.,40B, 235.Google Scholar
  21. 21.
    Brown, R. C. (1972).Phys. Rev. D,6, 1655.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Donald C. Salisbury
    • 1
    • 2
    • 3
    • 4
  1. 1.Syracuse UniversitySyracuse
  2. 2.Physics DepartmentReed CollegePortland
  3. 3.Rutgers University-NewarkNewark
  4. 4.Freie UniversitätBerlinWest Germany

Personalised recommendations