General Relativity and Gravitation

, Volume 20, Issue 2, pp 183–190 | Cite as

Late-time behavior of primordial gravitational waves in expanding universe

  • Alexander Feinstein
Research Articles


The results of two different approaches to the late-time behavior of primordial gravitational radiation are compared. Using asymptotic expansion in time of the tetrad components of the Riemann tensor one finds that initially chaotic behavior transfers itself into a radiative gravitational field of Petrov typeN ast→∞. On the other hand, to accomplish the physical picture, we study the high-frequency behavior of the field variables in the same formalism. We show that the background spacetime is of general Petrov type I, and then calculate the tetrad components of the stress-energy tensor induced by the “disappeared” radiation with the help of Newman-Penrose equations.


Radiation Asymptotic Expansion Differential Geometry Gravitational Field Gravitational Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, P. J., Hellings, R. W., Zimmerman, R. L., Farhoosh, H., Levine, D. I., and Zeldich, S. (1982).Ap. J.,253, 1.Google Scholar
  2. 2.
    Carr, B. J., and Verdaguer, E. (1983).Phys. Rev. D,28, 2995.Google Scholar
  3. 3.
    Carmeli, M., and Feinstein, A. (1984).Phys. Lett.,103A, 318.Google Scholar
  4. 4.
    Carmeli, M., Charach, Ch., and Malin, S. (1981).Phys. Rep., 79.Google Scholar
  5. 5.
    Isaacson, R. A. (1968).Phys. Rev.,166, 1263; (1968).Phys. Rev.,166, 1273.Google Scholar
  6. 6.
    Carmeli, M. and Charach, Ch. (1984).Found. Phys.,14, 963.Google Scholar
  7. 7.
    Ellis, G. F. R., and MacCallum, M. A. H. (1969).Com. Math. Phys.,12, 108.Google Scholar
  8. 8.
    Feinstein, A., and Charach, Ch. (1986).Class. Quantum Grav.,3, L5.Google Scholar
  9. 9.
    Weber, J., and Wheeler, J. (1957).Rev. Mod. Phys.,29, 429.Google Scholar
  10. 10.
    Ibañes, J., and Verdaguer, E. (1985).Phys. Rev.,D31, 251.Google Scholar
  11. 11.
    Stachel, J. (1966).J. Math. Phys.,7, 1321.Google Scholar
  12. 12.
    de Araujo, M. E. (1986).Gen. Rel. Grav.,18, 219.Google Scholar
  13. 13.
    Carmeli, M. (1982).Classical Fields (Wiley-Interscience, New York).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Alexander Feinstein
    • 1
  1. 1.Theoretical Astronomy Unit School of Mathematical Sciences, Queen Mary CollegeUniversity of LondonLondonEngland

Personalised recommendations