Advertisement

General Relativity and Gravitation

, Volume 11, Issue 6, pp 419–425 | Cite as

Yano vector fields and conformally related spaces

  • P. Spindel
Research Articles

Abstract

We discuss some geometrical properties of Killing forms of order three and exhibit a procedure for constructing spaces admitting such tensors. As an example we prove that all conformally flat spaces admitting such a tensor are related to spaces of constant curvature.

Keywords

Vector Field Geometrical Property Differential Geometry Constant Curvature Related Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yano, K., and Bochner, S. (1953).Curvature and Betti Numbers, Annals of Mathematics Studies No. 32 (Princeton University Press, Princeton, New Jersey), Chap. 3.Google Scholar
  2. 2.
    McLenaghan, R. G., and Spindel, P. (1979).Phys. Rev. D,20, 409.Google Scholar
  3. 3.
    Collinson, C. B. (1974).Tensor N.S.,28, 173; (1976).Int. J. Theor. Phys.,15, 311.Google Scholar
  4. 4.
    Carter, B., and McLenaghan, R. G. (1979).Phys. Rev. D,19, 1093.Google Scholar
  5. 5.
    Penrose, R. (1973).Ann. N. Y. Acad. Sci.,224, 125.Google Scholar
  6. 6.
    Chandrasekhar, S. (1976).Proc. R. Soc. London Ser. A,349, 571.Google Scholar
  7. 7.
    Carter, B. (1968).Phys. Rev.,174, 1559; (1977).Phys. Rev. D,16, 3395.Google Scholar
  8. 8.
    Carter, B. (1968).Commun. Math. Phys.,10, 280.Google Scholar
  9. 9.
    Debever, R. (1964).Cah. Phys.,168,169, 303; Cahen, M., Debever, R., and Defrise, L. (1967).J. Math. Mech.,16, 761.Google Scholar
  10. 10.
    Eisenhart, L. P. (1960).Riemannian Geometry (Princeton University Press, Princeton, New Jersey), Chap. 39.Google Scholar
  11. 11.
    Infeld, L., and Schild, A. (1945).Phys. Rev.,68, 250.Google Scholar
  12. 12.
    Brout, R., Englert, F., and Gunzig, E. (1978).Ann. Phys. (N.Y.),115, 78.Google Scholar
  13. 13.
    Gürsey, F. (1964). “Introduction to the de Sitter Group,” inGroup Theoretical Concepts and Methods in Elementary Particle Physics (Gordon and Breach, New York); see also Reference 10, Chap. 27.Google Scholar
  14. 14.
    Nachtmann, O. (1967).Comm. Math. Phys.,6, 1.Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • P. Spindel
    • 1
  1. 1.Department of Applied MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations