Advertisement

General Relativity and Gravitation

, Volume 15, Issue 10, pp 931–944 | Cite as

An exact anisotropic solution of the Einstein-Liouville equations

  • G. F. R. Ellis
  • D. R. Matravers
  • R. Treciokas
Research Articles

Abstract

A family of exact solutions of the Einstein-Liouville equations are presented, in which the space-time geometry is that of ak=0 ork=+1 Robertson-Walker space-time but the particle distribution function is anisotropic (and can be inhomogeneous). In some of these solutions, the fluid average (barycentric) velocity is not the timelike eigenvector of the fluid stress tensor. Then a “fundamental observer” moving with the average (barycentric) velocity will not observe these universes to be isotropic.

Keywords

Distribution Function Exact Solution Stress Tensor Differential Geometry Particle Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ehlers, J. (1961). Beitrage zur relativistischen Mechanik kontinuerlichen Medien,Abhand. Math. Nat. Kl. Akad. Wiss. Lit. Mainz.,11.Google Scholar
  2. 2.
    Ehlers, J. (1971). General relativity and kinetic theory, inGeneral Relativity and Cosmology, Sachs, R. K., ed., Varenna Summer School, Course XLVII (Academic Press, New York).Google Scholar
  3. 3.
    Ehlers, J. (1972). Survey of general relativity theory, inRelativity, Astrophysics and Cosmology, Israel, W., ed. (Reidel, Dordrecht).Google Scholar
  4. 4.
    Israel, W. (1972). The relativistic Boltzmann equation, inGeneral Relativity, O'Raifeartaigh, L., ed. (Oxford University Press, New York).Google Scholar
  5. 5.
    Stewart, J. M. (1971). Non-equilibrium relativistic kinetic theory,Lecture Notes in Physics, Vol. 10 (Springer, New York).Google Scholar
  6. 6.
    Ellis, G. F. R., Matravers, D. R., Treciokas, R. (1983). Anisotropic solutions of the Einstein-Boltzmann equations. I: General formalism,Ann. Phys. (N.Y.), (to appear).Google Scholar
  7. 7.
    Thorne, K. S. (1981). Relativistic radiative transfer: a moment formalism,Mon. Not. R. Astron. Soc.,194, 439.Google Scholar
  8. 8.
    Ellis, G. F. R. (1971). Relativistic cosmology, inGeneral Relativity and Cosmology, Sachs, R. K., ed., Varenna Summer School, Course XLVII (Academic Press, New York).Google Scholar
  9. 9.
    Ellis, G. F. R. (1973). Relativistic cosmology, inCargese Lectures in Physics, Vol. VI, Schatzmann, E., ed. (Gordon and Breach, New York).Google Scholar
  10. 10.
    Ehlers, J., Geren, P., and Sachs, R. K. (1968). Isotropic solutions of the Einstein-Liouville equations,J. Math. Phys.,8, 1344.Google Scholar
  11. 11.
    King, A. R., and Ellis, G. F. R. (1973). Tilted homogeneous cosmological models,Commun. Math. Phys.,31, 209.Google Scholar
  12. 12.
    Ellis, G. F. R., and MacCallum, M. A. H. (1969). A class of homogeneous cosmological models,Commun. Math. Phys.,12, 108.Google Scholar
  13. 13.
    McCallum, M. A. H. (1973). Cosmological models from a geometrical viewpoint, inCargese Lectures in Physics, Vol. VI, Schatzmann, E., ed. (Gordon and Breach, New York).Google Scholar
  14. 14.
    Bhatnager, P. L., Gross, E. P., and Krook, M. (1954). A model for collision processes in gases. I. Small amplitude processes in charged and neutral one component systems,Phys. Rev.,94, 511.Google Scholar
  15. 15.
    Marle, C. (1969). Sur l'establissement des equations de l'hydrodynamique des fluides relativistes dissipatifs. I.-L'equation de Boltzmann relativiste,Ann. Inst. Henri Poincare,X, 67.Google Scholar
  16. 16.
    Bel, L. (1969). Kinetic theory of cosmology,Astrophys. J.,155, 83.Google Scholar
  17. 17.
    Hakim, R. (1968). Self-consistent homogeneous isotropic cosmologicalmodels, Phys. Rev.,173, 1235.Google Scholar
  18. 18.
    Treciokas, R., and Ellis, G. F. R. (1971). Isotropic solutions of the Einstein-Boltzmann equations,Commun. Math. Phys.,23, 1Google Scholar
  19. 19.
    Treciokas, R. (1972). Relativistic kinetic theory, Ph.D. thesis, Department of Applied Mathematics and Theoretical Physics, Cambridge University, August 1972.Google Scholar
  20. 20.
    Thorne, K. S. (1980). Multipole expansions of gravitational radiation,Rev. Mod. Phys.,52(2) 299–339.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • G. F. R. Ellis
    • 1
  • D. R. Matravers
    • 1
  • R. Treciokas
    • 1
  1. 1.Department of Applied MathematicsUniversity of Cape TownCape TownSouth Africa

Personalised recommendations