General Relativity and Gravitation

, Volume 19, Issue 11, pp 1091–1100 | Cite as

Causal measurability in chronological spaces

  • L. B. Szabados
Research Articles

Abstract

We show that the causal structure determines a volume measurability up to sets of zero measure. In space-time manifolds this causal measurability, apart from sets of zero measure, agrees with the a priori four-dimensional Lebesgue measurability, provided the strong causality condition holds.

Keywords

Manifold Volume Measurability Lebesgue Measurability Differential Geometry Zero Measure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hawking, S. W., and Ellis, G. F. (1973).The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge).Google Scholar
  2. 2.
    Geroch, R. (1971). InGeneral Relativity and Cosmology, R. K. Sachs, ed. (Academic Press, New York).Google Scholar
  3. 3.
    Kolmogorov, A. N., and Fomin, S. V. (1960).Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, in Russian); Halmos, P. (1950).Measure Theory (D. Van Nostrand Co., Princeton, New Jersey); Choquet-Bruhat, Y., De Witt-Morett, C., and Dillard-Bleick, M. (1982).Analysis, Manifolds and Physics (North Holland Publ. Co., Amsterdam, New York, Oxford).Google Scholar
  4. 4.
    Kronheimer, E. (1971).Gen. Rel. Grav.,1, 261.Google Scholar
  5. 5.
    Kronheimer, E., and Penrose, R. (1967).Proc. Camb. Phil. Soc.,63, 481.Google Scholar
  6. 6.
    Carter, B. (1971).Gen. Rel. Grav.,1, 349.Google Scholar
  7. 7.
    Szabados, L. B. KFKI Report 1983-130.Google Scholar
  8. 8.
    Penrose, R. (1972). Techniques of Differential Topology in Relativity, No. 7 (SIAM, Philadelphia, Pennsylvania).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • L. B. Szabados
    • 1
  1. 1.Central Research Institute for PhysicsBudapest 114Hungary

Personalised recommendations