General Relativity and Gravitation

, Volume 21, Issue 7, pp 651–658 | Cite as

An interacting geometry model and induced gravity

  • Pawel O. Mazur
  • V. P. Nair
Research Articles


We propose the theory of quantum gravity with interactions introduced by topological principle. The fundamental property of such a theory is that its energy-momentum tensor is a BRST anticommutator. Physical states are elements of the BRST cohomology group. The model with only topological excitations, introduced recently by Witten, is discussed from the point of view of the induced gravity program. We find that the mass scale is induced dynamically by gravitational instantons. The low-energy effective theory has gravitons, which occur as the collective excitations of geometry, when the metric becomes dynamical. Applications of cobordism theory to quantum gravity are discussed.


Physical State Quantum Gravity Differential Geometry Mass Scale Fundamental Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wheeler, J. A. (1957). InConference on The Role of Gravitation in Physics, Chapel Hill, North Carolina, January 18–23, 1957 (WADC technical report 57-216, ASTIA document AD 118180).Google Scholar
  2. 2.
    Zel'dovich, Ya. B. (1967).Zh. Eksp. Teor. Fiz. Pis'ma Red.,6, 883 (JETP Lett.,6, 316).Google Scholar
  3. 3.
    Sakharov, A. (1967).Dokl. Akad. Nauk SSR,177, 70 [Sov. Phys. Dokl.,12, 1040 (1968)].Google Scholar
  4. 4.
    Hawking, S. W. (1979). InEinstein Centenary Volume (Cambridge University Press, Cambridge).Google Scholar
  5. 5.
    Witten, E. (1988).Topological Quantum Field Theory, Princeton preprint IAS-87/72;Topological Gravity, Princeton preprint IAS-88/2.Google Scholar
  6. 6.
    Witten, E. (1986).Nucl. Phys.,B267, 253.Google Scholar
  7. 7.
    Mazur, P. O., and Nair, V. P. (1987). In preparation.Google Scholar
  8. 8.
    Anderson, A., and De Witt, B. (1985).Found. Phys.,16, 91.Google Scholar
  9. 9.
    Adler, S. (1982).Rev. Mod. Phys.,54, 729.Google Scholar
  10. 10.
    Geroch, R. (1970).J. Math. Phys. (N.Y.),11, 437.Google Scholar
  11. 11.
    Hasslacher, B., and Mottola, E. (1980).Phys. Lett.,B95, 237; (1981).Phys. Lett.,B99, 221.Google Scholar
  12. 12.
    T'Hooft, G. (1976).Phys. Rev.,D14, 3432.Google Scholar
  13. 13.
    Sorkin, R. D. Private communication.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Pawel O. Mazur
    • 1
  • V. P. Nair
    • 2
  1. 1.Physics DepartmentSyracuse UniversitySyracuse
  2. 2.Physics DepartmentColumbia UniversityNew York

Personalised recommendations