General Relativity and Gravitation

, Volume 25, Issue 12, pp 1213–1218 | Cite as

Horned particles as the endpoint of Hawking evaporation

  • Thomas Banks
Research Articles

Abstract

This essay reviews recent developments in the theory of Hawking evaporation of black holes. Study of near extremal magnetically charged black holes using a two plus four dimensional effective field theory has led to the concept of horned particles orcornucopion as the endpoint of Hawking evaporation. Horned particles are geometries containing two large asymptotic regions connected by microscopic necks. They look like point particles to an observer in any given asymptotic region, but in many ways behave like macroscopic objects. In particular, it is very difficult to pair produce them in external fields and their contribution to virtual loops is highly suppressed. They can serve as the remnants necessary to account for the information apparently lost in Hawking evaporation. The information simply goes into the new asymptotic region formed when the black hole collapses and evaporates.

Keywords

Evaporation Black Hole Endpoint Field Theory External Field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hawking, S. W. (1975). InQuantum Gravity: an Oxford Symposium, C. J. Isham, R. Penrose, D. W. Sciama, eds. (Oxford University Press, Oxford); (1976).Phys. Rev. D14, 2460.Google Scholar
  2. 2.
    Banks, T., Peskin, M., Susskind, L. (1984).Nucl. Phys. B 244, 125; Srednicki, M. (1992). “Is Purity Eternal?” Preprint, UCSBTH 92-22, hep-th@xxx.lanl.gov 9206056.Google Scholar
  3. 3.
    Preskill, J. (1992). InProc. Int. Symposium on Black Holes, Membranes, Wormholes, and Superstrings (Woodlands, Texas, 16–18 January, 1992).Google Scholar
  4. 4.
    Arnowitt, R., Deser, S. Misner, C. W. (1962).The Dynamics of the Gravitational Field in Gravitation: An Introduction to Current Research, L. Witten, ed. (Wiley, New York).Google Scholar
  5. 5.
    Aharonov, Y., Casher, A., Nussinov, S. (1987).Phys. Lett. 191B, 51.Google Scholar
  6. 6.
    Gibbons, G., Maeda, K. (1988).Nucl. Phys. B 298, 741; Garfinkle, D., Horowitz, G., Strominger, A. (1991).Phys: Rev. D43, 3140.Google Scholar
  7. 7.
    Callan, C., Giddings, S., Harvey, J., Strominger, A. (1992).Phys. Rev. D 45, 1005.Google Scholar
  8. 8.
    Banks, T., Dabolkhar, A., Douglas, M., O'Loughlin, M. (1992).Phys. Rev. D 45, 3607.Google Scholar
  9. 9.
    Russo, J., Susskind, L., Thorlacius, L. (1992).Phys. Lett. 292B, 13.Google Scholar
  10. 10.
    Affleck, I., Manton, N. (1982).Nucl. Phys. B 194, 38.Google Scholar
  11. 11.
    Schwinger, J. (1951).Phys. Rev. 82, 664.Google Scholar
  12. 12.
    Banks, T., O'Loughlin, M., Strominger, A. (1992). “Black Hole Remnants and the Information Puzzle,” Rutgers preprint RU-92-40, hep-th@xxx.lanl.gov 9211030.Google Scholar
  13. 13.
    Garfinkle, D. Strominger, A. (1991).Phys. Lett. 256B, 146.Google Scholar
  14. 14.
    Harvey, J., Strominger, A. (1992).Quantum Mechanics of Black Holes, Lectures given at the Spring School on String Theory and Quantum Gravity, Trieste, Italy, March 1992.Google Scholar
  15. 15.
    Guth, A. H., Farhi, E. (1990).Nucl. Phys. B339, 417; (1987).Phys. Lett. 183B, 149; Linde, A. D. (1992).Nucl. Phys. B372, 421; Morgan, D. (1991).Phys. Rev. D43, 3144; Frolov, V. P., Markov, M. A., Mukhanov, V. F. (1989).Phys. Lett. 216B, 272; (1990).Phys. Rev. D41, 383.Google Scholar
  16. 16.
    Coleman, S. (1988).Nucl Phys. B 307, 867, 5310, 643; Giddings, S., Strominger, A. (1988).Nucl. Phys. B307, 854; Banks, T. (1989).Nucl. Phys. B309, 493; Strominger, A. (1989).Phil. Trans. R. Soc. London A329, 395; Banks, T. (1990).Physicalia 12, 19.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Thomas Banks
    • 1
  1. 1.Department of Physics and AstronomyRutgers UniversityPiscatawayUSA

Personalised recommendations