Advertisement

General Relativity and Gravitation

, Volume 20, Issue 7, pp 647–657 | Cite as

Complex relativity and real solutions. V. The flat space background

  • C. B. G. McIntosh
  • M. S. Hickman
  • A. W. -C. Lun
Research Articles

Abstract

One of the problems in dealing with double (and single) Kerr-Schild metrics is that there is a good deal of combined coordinate and tetrad freedom in writing any particular metric of this type in a standard form, and this freedom is not yet properly understood. This paper investigates part of this problem by examining the freedom in choosing the background flat metric for the standard form of a vacuum IDKS (integrable double Kerr-Schild) metric and by looking at the freedom in choosing the potentialH, which determines IDKS flat metrics in this standard form. Examples are given of different forms ofH which generate flat space. A slight generalization of the vacuum IDKS metric is also given in which thesurface equations andcurvature scalar are zero (i.e.,Φ00=Φ01=Φ11=Λ=0 in Newman-Penrose language) but the othercentral equations and theresidual equations are nonzero.

Keywords

Standard Form Differential Geometry Good Deal Real Solution Complex Relativity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McIntosh, C. B. G., and Hickman, M. S. (1985).Gen. Rel. Grav.,17, 111.Google Scholar
  2. 2.
    Hall, G. S., Hickman, M. S., and McIntosh, C. B. G. (1985).Gen. Rel. Grav.,17, 475.Google Scholar
  3. 3.
    Hickman, M. S., and McIntosh, C. B. G. (1986).Gen. Rel. Grav.,18, 107.Google Scholar
  4. 4.
    Hickman, M. S., and McIntosh, C. B. G. (1986).Gen. Rel. Grav.,18, 1275.Google Scholar
  5. 5.
    Plebañski, J. F., and Robinson, I. (1976).Phys. Rev. Lett.,37, 493.Google Scholar
  6. 6.
    Plebañski, J. F., and Robinson, I. (1977).Asymptotic Structure of Space-Time (Plenum Press, New York), p. 361.Google Scholar
  7. 7.
    Cohen, J. M., and Kegeles, L. S. (1974).Phys. Lett. A,47, 261.Google Scholar
  8. 8.
    Cohen, J. M., and Kegeles, L. S. (1975).Phys. Lett. A,54, 5.Google Scholar
  9. 9.
    Stewart, J. M. (1979).Proc. Roy. Soc. Lond. A,367, 527.Google Scholar
  10. 10.
    Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, E. (1980).Exact Solutions of Einstein's Field Equations (VEB Deutscher Verlag der Wissenschaften, Berlin/Cambridge University Press, Cambridge).Google Scholar
  11. 11.
    McIntosh, C. B. G., and Hickman, M. S. (1988).Single Kerr-Schild Metrics: A Double View. Gen. Rel. Grav.,20 (in press).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • C. B. G. McIntosh
    • 1
  • M. S. Hickman
    • 1
  • A. W. -C. Lun
    • 1
  1. 1.Mathematics DepartmentMonash UniversityClaytonAustralia

Personalised recommendations