Advertisement

General Relativity and Gravitation

, Volume 20, Issue 7, pp 623–634 | Cite as

Quantum conformal fluctuations revisited

  • J. Lahiri
  • V. J. Menon
Research Articles

Abstract

The conformal quantization method of Narlikar and Padmanabhan is reformulated with a view to take into account theexact propagator and to provide explicitnumerical estimates of various predictions for dust cosmologies. It is found that in spite of the divergence of quantum fluctuations at the big-bang epoch it is possible to construct wave packets which remain sharp fromt=10−70s, say, up to the present epoch provided the present state is finely tuned to the classical one. Also, if the transition probability from the Minkowski to the FRW metric is calculated using Gaussian wave functions (with zero mean) then thet2/3 models withk = 0, ± 1 cannot be distinguished, i.e., a fine tuning to the flat (k=0) model does not seem to result if the conformal factor depends on time only.

Keywords

Dust Wave Function Present State Wave Packet Differential Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Isham, C. J., Penrose, R., and Sciama, D. W. (1975).Quantum Gravity (Clarendon Press, Oxford).Google Scholar
  2. 2.
    Guth, A. H. (1981).Phys. Rev. D,23, 347.Google Scholar
  3. 3.
    Padmanabhan, T. (1982). Ph.D. Dissertation, Tata Institute of Fundamental Research, India.Google Scholar
  4. 4.
    Narlikar, J. V. (1981).Found. Phys.,11, 473.Google Scholar
  5. 5.
    Narlikar, J. V., and Padmanabhan, T. (1983).Ann. Phys.,150 (2), 289.Google Scholar
  6. 6.
    Narlikar, J. V., and Padmanabhan, T. (1983).Phys. Rep.,100 (3), 151.Google Scholar
  7. 7.
    Narlikar, J. V. (1978).Lectures on General Relativity and Cosmology (Macmillan, New York).Google Scholar
  8. 8.
    Infeld, L., and Schild, A. (1945).Phys. Rev.,68, 250.Google Scholar
  9. 9.
    Schiff, L. I. (1986).Quantum Mechanics (McGraw-Hill, New York).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • J. Lahiri
    • 1
  • V. J. Menon
    • 1
  1. 1.Department of PhysicsBanaras Hindu UniversityVaranasiIndia

Personalised recommendations