General Relativity and Gravitation

, Volume 20, Issue 4, pp 399–406 | Cite as

Connections and symmetries in spacetime

  • G. S. Hall
Research Articles


The extent to which a symmetric, metric connection on spacetime determines the metric is given, and some applications to affine collineations are discussed.


Differential Geometry Affine Collineations 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kobayashi, S., and Nomizu, K. (1963).Foundations of Differential Geometry, Vol.I (Interscience, New York).Google Scholar
  2. 2.
    Hall, G. S. (1984). InClassical General Relativity, Bonner, W. B., Islam, J. N., and Mac-Callum, M.A.H., eds. (Cambridge University Press, Cambridge, England).Google Scholar
  3. 3.
    Hall, G. S., and McIntosh, C. B. G. (1983).Int. J. Theor. Phys.,22, 469.Google Scholar
  4. 4.
    Hall, G. S., and Kay, W. (1988).J. Math. Phys., (to appear).Google Scholar
  5. 5.
    Schmidt, B. G. (1973).Commun. Math. Phys.,29, 55.Google Scholar
  6. 6.
    Ehlers, J., and Kundt, W. (1962). InGravitation: An Introduction to Current Research, Witten, ed. (John Wiley & Sons, New York).Google Scholar
  7. 7.
    Hall, G. S., and Kay, W. (1988).J. Math. Phys., (to appear).Google Scholar
  8. 8.
    Rendall, A. D. (1988).J. Math. Phys., (to appear).Google Scholar
  9. 9.
    Schell, J. F. (1961).J. Math. Phys.,2, 202.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • G. S. Hall
    • 1
  1. 1.Department of MathematicsUniversity of AberdeenAberdeenScotland UK

Personalised recommendations