General Relativity and Gravitation

, Volume 20, Issue 4, pp 305–316 | Cite as

N=1 Dilatation supergravity

  • P. Mahato
Research Articles


The geometrical aspect of theN=1 dilatation supergravity is here studied from the point of view of the internal structure of matter. It is shown thatN=1 supergravity may be taken to have arisen from the internal helicity of hadrons and gives rise to a torsion term in the gravitational action. This formalism is found to be in conformity with the chiral formalism of superfield developed by other authors.


Internal Structure Differential Geometry Geometrical Aspect Gravitational Action Torsion Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ogievetskii, V. I., and Sokachev, E. S. (1980).Sov. J. Nucl. Phys.,31, 424–433.Google Scholar
  2. 2.
    Rosly, A. A., and Schwarz, A. S. (1984).Commun. Math. Phys.,95, 161–184.Google Scholar
  3. 3.
    Rosly, A. A., and Schwarz, A. S. (1985). In:Proceedings of the Third Seminar on Quantum Gravity, Markow, M. A., Berezin, V. A., and Frolov, V. P., eds. (World Scientific, Singapore).Google Scholar
  4. 4.
    Galperin, A. S., Ogievetsky, V. I., and Sokatchev, E. (1983). InSuper symmetry and Supergravity 1983, Milewski, B., ed. (World Scientific, Singapore).Google Scholar
  5. 5.
    Galperin, A., Ivanov, E., Ogievetsky, V. I., and Sokatchev, E. (1986). InSuper symmetry, Supergravity, Superstrings 1986, de Wit, B., Fayet, P., and Grisaru, M., eds. (World Scientific, Singapore).Google Scholar
  6. 6.
    Schwarz, A. S. (1982).Commun. Math. Phys.,87, 37–63.Google Scholar
  7. 7.
    Siegel, W., and Gates, S. J., Jr. (1979).Nucl. Phys. 6,147, 77–104.Google Scholar
  8. 8.
    Mahato, P., and Bandyopadhyay, P. (1987). Topological Invariant, Torsion andN=1 Supergravity.Google Scholar
  9. 9.
    Bandyopadhyay, P. (1987). Twistor geometry reflection group and the internal symmetry of hadrons (preprint).Google Scholar
  10. 10.
    Frolov, I. V. (1982).Yael. Fiz.,36, 1014–1022.Google Scholar
  11. 11.
    Barut, A. O., and Bohm, A. (1970).Jour. Math. Phys.,11, 2938–2945.Google Scholar
  12. 12.
    Bandyopadhyay, A., Chatterjee, P., Bandyopadhyay, P. (1986).Nuovo Cim. B,94B, 105–118.Google Scholar
  13. 13.
    Chatterjee, P., Bandyopadhyay, A., and Bandyopadhyay, P. (1986).General Relativity and Gravitation,18, 1127–1140.Google Scholar
  14. 14.
    Bandyopadhyay, A., Chatterjee, P., and Bandyopadhyay, P. (1986).General Relativity and Gravitation,18, 1193–1205.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • P. Mahato
    • 1
  1. 1.Narasinha Dutt CollegeHowrah-1, W.B.India

Personalised recommendations