Advertisement

Combustion, Explosion and Shock Waves

, Volume 25, Issue 6, pp 733–739 | Cite as

Investigation of the effect of gasdynamic perturbations behind a deformed nozzle cluster on the inversion and power of a combustion CO2 gasdynamic laser

  • V. A. Levin
  • S. Yu. Mitichkin
  • Yu. V. Tunik
  • A. N. Khmelevskii
Article
  • 13 Downloads

Keywords

Supersonic Flow Rarefaction Wave Stagnation Pressure Amplification Coefficient Critical Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. A. Losev, Gasdynamic Lasers, Nauka, Moscow (1977).Google Scholar
  2. 2.
    G. I. Kozlov and E. A. Stupitskii, Zh. Tekh. Fiz.,45, No. 2, 359 (1975).Google Scholar
  3. 3.
    R. I. Soloukhin and N. A. Fomin, Dokl. Akad. Nauk SSSR,228, No. 3, 596 (1976).ADSGoogle Scholar
  4. 4.
    V. A. Levin and Yu. V. Tunik, Izv. Akad. Nauk. SSSR. Mekh. Zhidk. Gaza, No. 1, 118 (1976).Google Scholar
  5. 5.
    B. V. Egorov and V. N. Komarov, P.M.T.F., No. 2, 24 (1975).Google Scholar
  6. 6.
    B. V. Egorov, V. N. Komarov, and G. N. Sayapin, P.M.T.F.,5, 13 (1976).Google Scholar
  7. 7.
    S. B. Goryachev, A. G. Novoselov, I. L. Poluéktova, et al., Gasdynamics of the Flow Portion of Gasdynamic Laser, Novosibirsk: I.T.P.M. Sib. Div. Akad. Nauk SSSR (1987).Google Scholar
  8. 8.
    A. S. Boreisho, A. V. Lavrov, V. F. Lebedev, et al., Inzh. Fiz. Zh.,52, No. 1, 90 (1987).Google Scholar
  9. 9.
    A. B. Britan, V. A. Levin, S. A. Losev, et al., Kvantovaya Elektron.,8, No. 5, 1002 (1981).Google Scholar
  10. 10.
    A. B. Britan, V. A. Levin, A. M. Starik, et al., Kvantovaya Elektron.,13, No. 1, 86 (1986).Google Scholar
  11. 11.
    G. D. Smekhov and V. A. Fotiev, Zh. V.M.M.F.,18, No. 5, 1283 (1978).Google Scholar
  12. 12.
    Yu. V. Tunik, Nonequilibrium Gas Flows and Optimum Body Shapes in Supersonic Flow [in Russian], Mosk. Gos. Univ., Moscow (1978).Google Scholar
  13. 13.
    H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York (1968).Google Scholar
  14. 14.
    V. P. Verkhovskii, “Numerical computation of supersonic nozzles with a contour break. Tables of nozzle coordinates for Mach numbers between 3 and 7”, Tr. Tsentr. Aerogidr. Inst., No. 1680 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • V. A. Levin
  • S. Yu. Mitichkin
  • Yu. V. Tunik
  • A. N. Khmelevskii

There are no affiliations available

Personalised recommendations