General Relativity and Gravitation

, Volume 20, Issue 5, pp 451–456 | Cite as

A vortex-line model for a system of cosmic strings in equilibrium

  • B. Linet
Research Articles


We show that the field equations of a scalar-gauge theory in general relativity can admit vortex-type solutions describingN parallel vortex lines that we interpret asN infinite straight cosmic strings remaining in equilibrium.


Vortex General Relativity Field Equation Differential Geometry Cosmic String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vilenkin, A. (1985).Phys. Rep.,121, 263.Google Scholar
  2. 2.
    Letelier, P. S. (1987).Class. Quant. Grav.,4, L75.Google Scholar
  3. 3.
    Gott III, J. R. (1985).Astrophys. J.,288, 422.Google Scholar
  4. 4.
    Hiscock, W. (1985).Phys. Rev. D,31, 3288.Google Scholar
  5. 5.
    Linet, B. (1985).Gen. Rel. Grav.,17, 1109.Google Scholar
  6. 6.
    Kramer, L. (1971).Phys. Rev. B,3, 3821.Google Scholar
  7. 7.
    Jacobs, L., and Rebbi, C. (1979).Phys. Rev. B,19, 4486.Google Scholar
  8. 8.
    Garfinkle, D. (1985).Phys. Rev. D,32, 1323.Google Scholar
  9. 9.
    Laguna-Castillo, P., and Matzner, R. A. (1987).Phys. Rev. D,35, 2933.Google Scholar
  10. 10.
    Gregory, R. (1987).Phys. Rev. Lett.,59, 740.Google Scholar
  11. 11.
    Linet, B. (1987).Phys. Lett. A,124, 240.Google Scholar
  12. 12.
    Lohe, M. A. (1977).Phys. Lett. B,70, 325.Google Scholar
  13. 13.
    Bogomol'nyi, E. B. (1976).Sov. J. Nucl. Phys. 24, 449.Google Scholar
  14. 14.
    Taubes, C. H. (1980).Comm. Math. Phys. 72, 277.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • B. Linet
    • 1
  1. 1.Unité Associ'ee au C.N.R.S. no. 769Université Pierre et Marie Curie, Institut Henri PoincaréParis Cedex 05France

Personalised recommendations