Advertisement

General Relativity and Gravitation

, Volume 20, Issue 5, pp 437–450 | Cite as

A broken-symmetry theory of gravity

  • Ramesh Chandra
Research Articles
  • 72 Downloads

Abstract

Quantum effects at the beginning of the universe suggest the variability of the cosmical constant and the effective gravitational constant. These variations may be incorporated into the theory of gravity in a natural way by proposing a longrange complex scalar field similar to the massless Higgs scalar field. On this basis a broken-symmetry theory of gravity has been proposed. The WKB expansion of the complex scalar field helps us to relate the effective gravitational constant to the usual gravitational constant. The proposed theory of gravity has been applied to a homogeneous and isotropic cosmological model to study the quantum effects near the beginning of the universe.

Keywords

Scalar Field Longrange Differential Geometry Cosmological Model Quantum Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zel'dovich, Ya, B. (1967).Sov. Phys. JETP Lett.,6, 316; (1968),Sov. Phys. Usp.,11, 381.Google Scholar
  2. 2.
    Linde, A. D. (1974).JETP Lett.,19, 183; (1980),Phys. Lett. B,93, 394; (1982),Phys. Lett. B,108, 386.Google Scholar
  3. 3.
    Dicke, R. H. (1964). InGravitation and Relativity, Chiu, H. Y., and Hoffmann, W. F., ed. (Benjamin, New York), p. 128.Google Scholar
  4. 4.
    Brans, C., and Dicke, R. H. (1961).Phys. Rev.,124, 925.Google Scholar
  5. 5.
    Gamov, G. (1970).My World Line (Viking, New York), p. 44.Google Scholar
  6. 6.
    Linden-Bell, D. (1977).Nature,270, 396.Google Scholar
  7. 7.
    Tinsley, B. (1978).Nature,273, 208.Google Scholar
  8. 8.
    Weinberg, S. (1967).Phys. Rev. Lett.,19, 1264; (1973),Phys. Rev. D,7, 2887; Salam, A. (1968). InElementary Particle Theory, Noble Symposium No. 8, Savartholm, N., ed. (Almquist and Wiksell, Stockholm).Google Scholar
  9. 9.
    Dirac, P. A. M. (1937).Nature,139, 323; (1938),Proc. Roy. Soc. A,165, 199.Google Scholar
  10. 10.
    Dirac, P. A. M. (1973).Proc. Roy. Soc. A,333, 403; (1974),A338, 439.Google Scholar
  11. 11.
    Canuto, V., Adams, P. J., Hrich, S. M., and Tsiang, E. (1977).Phys. Rev. D,16, 1643.Google Scholar
  12. 12.
    Rosen, N. (1982).Found. Phys.,12, 213.Google Scholar
  13. 13.
    Narlikar, J. V. (1983).Found. Phys.,13, 311.Google Scholar
  14. 14.
    Shapiro, I. I., Smith, W. B., Ash, M. E., Ingalls, R. P., and Pettengill, G. H. (1971).Phys. Rev. Lett.,26, 27.Google Scholar
  15. 15.
    Hellings, R. W., Adams, P. J., Anderson, J. D., Keesey, M. S., Lau, E. L., Standish, E. M., Canuto, V. M., and Goldman, I. (1983).Phys. Rev. Lett.,51, 1609.Google Scholar
  16. 16.
    Ginzburg, V., and Landau, L. (1950).Zh. Eksp. Teor. Fiz. c,2, 1064.Google Scholar
  17. 17.
    t'Hooft, G. (1971).Nucl. Phys. B,35, 167; Lec. B. W. (1972).Phys. Rev. D,5, 823; Tyutin, I.V., and Fradkin, E. S. (1972).Yad. Fiz.,16, 835.Google Scholar
  18. 18.
    Zee, A. (1979).Phys. Rev. Lett.,42, 417.Google Scholar
  19. 19.
    Smolin, L. (1979).Nucl. Phys. B,160, 253.Google Scholar
  20. 20.
    Bekenstein, J. D., and Meisch, A. (1980).Phys. Rev. D,22, 1313.Google Scholar
  21. 21.
    Lord, E. A. (1976).Tensors Relativity and Cosmology (McGraw-Hill, New York), p. 189.Google Scholar
  22. 22.
    Harrison, E. (1967).Nature,215, 151; (1968),Phys. Today,21, 31.Google Scholar
  23. 23.
    Bachall, J., Callan, C., and Dashan, R. (1971).Ap. J.,163, 239.Google Scholar
  24. 24.
    A. similar problem has been raised by Pollock, M. D. (1982).Phys. Lett. B,108, 386.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Ramesh Chandra
    • 1
  1. 1.Department of MathematicsSt. Andrew's CollegeGorakhpurIndia

Personalised recommendations