Skip to main content
Log in

Role of cellular antioxidants in metal-induced damage

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

8-OHG:

8-hydroxy-2′-deoxyguanosine

CAT:

catalase

DEM:

dimethyl maleate

DMSO:

dimethyl sulfoxide

G6PD:

glucose-6-phosphate dehydrogenase

GlyGlyHis:

glycylglycyl-L-histidine

GPx:

glutathione peroxidase

GSH:

reduced glutathione

GST:

GSHS-transferase

MT:

metallothionein

SOD:

superoxide dismutase

V79:

Chinese hamster V79 cells

References

Antioxidants

  • Floyd RA. The role of 8-hydroxyguanine in carcinogenesis. Carcinogenesis 1990;11:1447–50.

    Google Scholar 

  • Hochstein P, Atallah AS. The nature of antioxidant systems in the inhibition of mutation and cancer. Mutat Res. 1988;202:363–75.

    Google Scholar 

  • Meneghini R. Genotoxicity of active oxygen species in mammalian cells. Mutat Res. 1988;195:215–30.

    Google Scholar 

  • Sun Y Free radicals, antioxidant enzymes, and carcinogenesis. Free Rad Biol Med. 1990;8:583–99.

    Google Scholar 

Chromium

  • Aiyar J, Berkovits HJ, Floyd RA, Wetterhahn KE. Reaction of chromium(VI) with hydrogen peroxide in the presence of glutathione: reactive intermediates and resulting DNA damage. Chem Res Toxicol 1990;3:595–603.

    Google Scholar 

  • Capellmann M, Bolt HM. Chromium(VI) reducing capacity of ascorbic acid and of human plasmain vitro. Arch Toxicol. 1992;66:45–50.

    Google Scholar 

  • De Flora S, Wetterhahn KE. Mechanism of chromium(VI) metabolism and genotoxicity. Life Chem Rep. 1989;7: 169–244.

    Google Scholar 

  • De Flora S, Bagnasco M, Serra D, Zanacchi P. Genotoxicity of chromium compounds: a review. Mutat Res. 1990;238: 99–172.

    Google Scholar 

  • Faux SP, Gao M, Chipman JK, Levy LS. Production of 8-hydroxydeoxyguanosine in isolated DNA by chromium(VI) and chromium(V). Carcinogenesis. 1992;13:1667–9.

    Google Scholar 

  • Kawanishi S, Inoue S, Sano S Mechanism of DNA cleavage-induced by sodium chromate(VI) in the presence of hydrogen peroxide. J Biol Chem. 1986;261:5952–8.

    Google Scholar 

  • Koutras GA, Hattori J, Schneider AS, Ebaugh FGJ, Valentine WN. Studies on chromated erythrocytes: effect of sodium chromate on erythrocyte glutathione reductase. J Clin Invest. 1964;43:323–31.

    Google Scholar 

  • Lefebvre Y, Pézerat H. Production of activated species of oxygen during the chromate(VI)-ascorbate reaction: Implication in carcinogenesis. Chem Res Toxicol. 1992;5:461–3.

    Google Scholar 

  • Ozawa T, Hanaki A. Spin-trapping studies on the reactions of Cr(III) with hydrogen peroxide in the presence of biological reductants: Is Cr(III) non-toxic? Biochem Int. 1990;22:343–52.

    Google Scholar 

  • Salnikow K, Zhitkovich A, Costa M. Analysis of the binding sites of chromium to DNA and proteinin vitro and in intact cells. Carcinogenesis. 1992;13:2341–6.

    Google Scholar 

  • Sengupta T, Chattopadhyay D, Ghosh N, Das M, Chatterjee GC. Effect of chromium administration on glutathione cycle of rat intestinal epithelial cells. Indian J Exp Biol. 1990;28:1132–5.

    Google Scholar 

  • Shi X, Dalal NS. On the hydroxyl radical formation in the reaction between hydrogen peroxide and biologically generated chromium(V) species. Arch Biochem Biophys. 1990;277:342–50.

    Google Scholar 

  • Shi X, Dalal NS. The role of superoxide radical in chromium(VI)-generated hydroxyl radical: the Cr(VI) Haber-Weiss cycle. Arch Biochem Biophys. 1992; 292:323–7.

    Google Scholar 

  • Shi X, Sun X, Gannett PM, Dalal NS. Deferoxamine inhibition of Cr(V)-mediated radical generation and deoxyguanine hydroxylation: ESR and HPLC evidence. Arch Biochem Biophys. 1992;293:281–6.

    Google Scholar 

  • Shi X, Dalal NS, Kasprzak KS. Generation of free radicals from hydrogen peroxide and lipid hydroperoxides in the presence of Cr(III). Arch Biochem Biophys. 1993;302:294–9.

    Google Scholar 

  • Standeven AM, Wetterhahn KE. Is there a role for reactive oxygen species in the mechanism of chromium(VI) carcinogenesis? Chem Res Toxicol. 1991;4:616–25.

    Google Scholar 

  • Standeven AM, Wetterhahn KE. Ascorbate is the principal reductant of chromium(VI) in rat lung ultrafiltrates and cytosols, and mediates chromium-DNA bindingin vitro. Carcinogenesis. 1992;13:1319–24.

    Google Scholar 

  • Sugden KD, Geer RD, Rogers SJ. Oxygen radical-mediated DNA damage by redox-active Cr(III) complexes. Biochemistry. 1992;31:11626–31.

    Google Scholar 

  • Sugiyama M. Role of physiological antioxidants in chromium(VI)-induced cellular injury. Free Rad Biol Med. 1992;12:397–407.

    Google Scholar 

  • Sugiyama M, Ando A, Nakao K, Ueta H, Hidaka T, Ogura R. Influence of vitamin B2 on formation of chromium(V), alkali-labile sites, and lethality of sodium chromate(VI) in Chinese hamster V-79 cells. Cancer Res 1989;49:6180–4.

    Google Scholar 

  • Sugiyama M, Tsuzuki K, Ogura R. Effect of ascorbic acid on DNA damage, cytotoxicity, glutathione reductase, and formation of paramagnetic chromium in Chinese hamster V-79 cells treated with sodium chromate(VI). J Biol Chem. 1991;266:3383–6.

    Google Scholar 

  • Sugiyama M, Tsuzuki K, Haramaki N. DNA single-strand breaks and cytotoxicity induced by chromate(VI) in hydrogen peroxide-resistant cell lines. Mutat Res. 1993a;299:95–102.

    Google Scholar 

  • Sugiyama M, Tsuzuki K, Haramaki N. Influence ofo-phenanthroline on DNA single strand breaks, alkali-labile sites, glutathione reductase, and formation of chromium(V) in Chinese hamster V-79 cells treated with sodium chromate(VI). Arch Biochem Biophys. 1993b;305:261–6.

    Google Scholar 

  • Wise JP, Orenstein JM, Patierno SR. Inhibition of lead chromate clastogenesis by ascorbate: relationship to particle dissolution and uptake. Carcinogenesis. 1993;14:429–34.

    Google Scholar 

Nickel

  • Andersen HR, Andersen O. Effect of nickel chloride on hepatic lipid peroxidation and glutathione concentration in mice. Biol Trace Elem Res. 1989;21:255–61.

    Google Scholar 

  • Arrouijal FZ, Hildebrand HF, Vophi H, Marzin D. Genotoxic activity of nickel subsulfide α-Ni3S2. Mutagenesis. 1990;6:583–9.

    Google Scholar 

  • Arsalane K, Aerts C, Wallaert B, Voisin C, Hildebrand HF. Effects of nickel hydroxycarbonate on alveolar macrophage functions. J Appl Toxicol. 1992;12:285–90.

    Google Scholar 

  • Athar M, Hasan SK, Srivastava R. Evidence for the involvement of hydroxyl radicals in nickel mediated enhancement of lipid peroxidation: Implications for nickel carcinogenesis. Biochem Biophys Res Commun. 1987;147:1276–81.

    Google Scholar 

  • Cartana J, Romeu A, Arola L. Effects of copper, cadmium and nickel on liver and kidney glutathione redox cycle of rats (Rattus sp.). Comp Biochem Physiol. [C] 1992;101:209–13.

    Google Scholar 

  • Chang J, Watson WP, Randerath E, Bulky DNA-adduct formation induced by Ni(II)in vitro andin vivo as assayed by32P-postlabeling. Mutat Res. 1993;291:147–59.

    Google Scholar 

  • Christie NT, Katsifis SP. Nickel carcinogenesis. In: Foulkes EC, ed. Biological effects of heavy metals, vol. II, Metal carcinogenesis. Baton Rouge, FL: CRC Press 1990:95–128.

    Google Scholar 

  • Christie NT, Tummolo DM, Klein CB, Rossman TG. The role of Ni(II) in mutation. In: Nieboer E, Nriagu J eds. Nickel and human health: current perspectives. New York: Wiley; 1992:305–17 (Advances in environmental science and technology; vol.25).

    Google Scholar 

  • Coogan TP, Latta DM, Snow ET, Costa M. Toxicity and carcinogenicity of nickel compounds. CRC Crit Rev Toxicol. 1989;19:341–84.

    Google Scholar 

  • Costa M. Molecular mechanisms of nickel carcinogenesis. Annu Rev Pharmacol Toxicol. 1991;31:321–37.

    Google Scholar 

  • Cotelle N, Tremolieres E, Bernier JL, Catteau JP, Henichart JP. Redox chemistry of complexes of nickel(II) with some biologically important peptides in the presence of reduced oxygen species: an ESR study. J Inorg Biochem. 1992;46:7–15.

    Google Scholar 

  • Inoue S, Kawanishi S. ESR evidence for superoxide, hydroxyl radicals and singlet oxygen produced from hydrogen peroxide and nickel(II) complex of glycylglycyl-L-histidine. Biochem Biophys Res Commun. 1989;159:445–51.

    Google Scholar 

  • Iscan M, Coban T, Eke BC. Responses of hepatic xenobiotic metabolizing enzymes of mouse, rat and guinea-pig to nickel. Pharmacol Toxicol. 1992;71:434–42.

    Google Scholar 

  • Kargacin B, Klein CB, Costa M. Mutagenic responses of nickel oxides and nickel sulfides in Chinese hamster V79 cell lines at the xanthine-guanine phosphoribosyl transferase locus. Mutat Res. 1993;300:63–72.

    Google Scholar 

  • Kasprzak KS. The role of oxidative damage in metal carcinogenicity. Chem Res Toxicol. 1991;4:604–15.

    Google Scholar 

  • Kasprzak KS, Hernandez L. Enhancement of hydroxylation and deglycosylation of 2′-deoxyguanosine by carcinogenic nickel compounds. Cancer Res. 1989;49:5964–8.

    Google Scholar 

  • Kawanishi S, Inoue S, Yamamoto K. Site-specific DNA damage induced by nickel(II) ion in the presence of hydrogen peroxide. Carcinogenesis. 1989;10:2231–5.

    Google Scholar 

  • Klein CB, Frankel K, Costa M. The role of oxidative processes in metal carcinogenesis. Chem Res Toxicol. 1991;4:592–603.

    Google Scholar 

  • Li W, Zhao Y, Chou IN. Alterations in cytoskeletal protein sulfhydryls and cellular glutathione in cultured cells exposed to cadmium and nickel ions. Toxicology. 1993;77:65–79.

    Google Scholar 

  • Lin XH, Sugiyama M, Costa M. Differences in the effect of vitamin E on nickel sulfide or nickel chloride-induced chromosomal aberrations in mammalian cells. Mutat Res. 1991;260:159–64.

    Google Scholar 

  • Misra N, Rodriguez RE, Kasprzak, KS. Nickel induced lipid peroxidation in the rat: correlation with nickel effect on antioxidant defense systems. Toxicology. 1990;64:1–17.

    Google Scholar 

  • Misra M, Rodriguez RE, North SL, Kasprazak KS. Nickel-induced renal lipid peroxidation in different strains of mice: concurrence with nickel effect on antioxidant defense systems. Toxicol Lett. 1991;58:121–33.

    Google Scholar 

  • Miyaki M, Akamatsu N, Ono T, Koyama H. Mutagenicity of metal cations in cultured cells from Chinese hamsters. Mutat Res. 1979;68:259–63.

    Google Scholar 

  • Nackerdien Z, Kasprzak KS, Rao G, Halliwell B, Dizdaroglu M. nickel(II)- and cobalt(II)-dependent damage by hydrogen peroxide to the DNA bases in isolated human chromatin. Cancer Res. 1991;51:5837–42.

    Google Scholar 

  • Nieboer E, Maxwell RI, Stafford AR. Chemical and biological reactivity of insoluble nickel compounds and the bioinorganic chemistry of nickel. In: Sunderman FW, ed. Nickel and the human environment. Lyon, France: IARC; 1984;439–58. (IARC scientific publications; vol. 53).

    Google Scholar 

  • Nieboer E, Tom RT, Rossetto FE. Superoxide dismutase activity and novel reactions with hydrogen peroxide of histidine-containing nickel(II)-oligopeptide complexes and nickel(II)-induced structural changes in synthetic DNA. Biol Trace Elem Res. 1989;21:23–33.

    Google Scholar 

  • Novelli EL, Sforcin JM, Rodrigues NL, Ribas BO. Pancreas damage and intratracheal NiCl2 administration. Effects of nickel chloride. Bol Estud Med Biol. 1990;38:54–8.

    Google Scholar 

  • Novelli EL, Rodrigues NL, Ribas BO, Curi PR. Intratracheal injection of nickel chloride and copper-zinc superoxide dismutase activity in lung of rats. Can J Physiol Pharmacol. 1992;70:709–11.

    Google Scholar 

  • Rodriguez RE, Misra M, Kasprzak KS. Effects of nickel on catalase activityin vitro andin vivo. Toxicology. 1990;63:45–52.

    Google Scholar 

  • Rodriguez RE, Misra M, North SL, Kasprzak KS. Nickel-induced lipid peroxidation in the liver of different strains of mice and its relation to nickel effects on antioxidant systems. Toxicol Lett. 1991;57:269–81.

    Google Scholar 

  • Shi X, Dalal NS, Kasprzak KS. Generation of free radicals from lipid hydroperoxides by Ni2+ in the presence of oligopeptides. Arch Biochem Biophys. 1992;299:154–62.

    Google Scholar 

  • Srivastava RC, Kumar A, Srivastava SK, Gupta S, Hasan SK, Athar M. Nickel-mediated inhibition in the glutathione-dependent protection against lipid peroxidation. Biochem Int. 1990;20:495–501.

    Google Scholar 

  • Sunderman FW Jr. Carcinogenicity of nickel compounds in animals. In: Sunderman FW, ed. Nickel and the human environment. Lyon, France: IARC; 1984;127–42. (IARC scientific publications, vol. 53).

    Google Scholar 

  • Sunderman FW, Hopfer SM, Knight JA et al. Physicochemical characteristics and biological effects of nickel oxides. Carcinogenesis. 1987;8:305–13.

    Google Scholar 

  • Zhong Z, Troll W, Koenig KL, Frenkel K. Carcinogenic sulfide salts of nickel and cadmium induce H2O2 formation by human polymorphonuclear leukocytes. Cancer Res. 1990;50:7564–70.

    Google Scholar 

Cadmium

  • Abel J, de Ruiter N. Inhibition of hydroxyl radical-generated DNA degradation by metallothionein. Toxicol Lett. 1989;47:101–7.

    Google Scholar 

  • Almar MM, Dierickx PJ. In vitro interaction of mercury, copper(II) and cadmium with human glutathione transferase pi. Res Commun Chen Pathol Pharmacol. 1990;69:99–102.

    Google Scholar 

  • Amoruso MA, Witz G, Goldstein BD. Enhancement of rat and human phagocyte superoxide anion radical production by cadmiumin vitro. Toxicol Lett. 1982;10:133–8.

    Google Scholar 

  • Angle CR, Thomas DJ, Swanson SA. Toxicity of cadmium to rat osteosarcoma cells (ROS 17/2.8): protective effect of 1α,25-dihydroxyvitamin D3. Toxicol Appl Pharmacol. 1990;103:113–20.

    Google Scholar 

  • Bannai S, Sato H, Ishii T, Taketani S. Enhancement of glutathione levels in mouse, peritoneal macrophages by sodium arsenite, cadmium chloride and glucose/glucose oxidase. Biochim Biophys Acta. 1991;1092:175–9.

    Google Scholar 

  • Bauman JW, McKim JMJ, Liu J, Klaassen CD. Induction of metallothionein by diethyl maleate. Toxicol Appl Pharmacol. 1992;114:188–96.

    Google Scholar 

  • Beach LR, Palmiter RD. Amplification of the metallothionein-I gene in cadmium-resistant mouse cells. Proc Natl Acad Sci USA. 1981;78:2110–4.

    Google Scholar 

  • Beach LR, Mayol KE, Durnam DM, Palmiter RD. Metallothionein-I gene in cadmium-resistant mouse cell lines. In: Brown DD, Fox CF, eds. Developmental biology using purified genes. New York: Academic Press (ICN-UCLA symposia on molecular and cellular biology, vol. XXIII); 1981.

    Google Scholar 

  • Bell RR, Nonavinakere VK, Soliman MR, Early JL. Effect ofin vitro treatment of rat hepatocytes with selenium, and/or cadmium on cell viability, glucose output, and cellular glutathione. Toxicology. 1991;69:111–9.

    Google Scholar 

  • Bjerrum MJ, Bauer R, Danielsen E, Kofod P. The Zn-site in bovine copper, zinc superoxide dismutase studied by111Cd PAC. Free Radic Res Commun. 1991;12–13:297–303.

    Google Scholar 

  • Chan HM, Cherian MG. Protective roles of metallothionein and glutathione in hepatotoxicity of cadmium. Toxicology. 1992;72:281–90.

    Google Scholar 

  • Chin TA, Templeton DM. Protective elevations of glutathione and metallothionein in cadmium-exposed mesangial cells. Toxicology. 1993;77:145–56.

    Google Scholar 

  • Chubatsu LS, Gennari M, Meneghini R. Glutathione is the antioxidant responsible for resistance to oxidative stress in V79 Chinese hamster fibroblasts rendered resistant to cadmium. Chem Biol Interact. 1992;82:99–110.

    Google Scholar 

  • Coogan TP, Bare RM, Waalkes MP. Cadmium-induced DNA strand damage in cultured liver cells: reduction in cadmium genotoxicity following zinc pretreatment. Toxicol Appl Pharmacol. 1992;113:227–33.

    Google Scholar 

  • Early JL, Schnell RC. Selenium antagonism of cadmium-induced inhibition of hepatic drug metabolism in the male rat. Toxicol Appl Pharmacol. 1981;58:57–66.

    Google Scholar 

  • Fariss MW. Cadmium toxicity: unique cytoprotective properties of alpha tocopheryl succinate in hepatocytes. Toxicology. 1991;69:63–77.

    Google Scholar 

  • Flagel KM, Carry EF, Pond WG, Krook LP. Dietary selenium and cadmium interrelationship in growing swine. J Nutr. 1980;110:1255–61.

    Google Scholar 

  • Friberg L, Piscator M, Nordberg GF, Kjellstron T. Cadmium in the environment, 2nd ed. CRC Press, Cleveland, OH; 1974:137–69.

    Google Scholar 

  • Gasiewicz TA, Smith JC. Properties of the cadmium and selenium complex formed in rat plasmain vivo andin vitro. Chem-Biol Interact. 1978;23:171–83.

    Google Scholar 

  • Gick GG, McCarty KS Jr, McCarty KD Sr. The role of metallothionein synthesis in cadmium- and zinc-resistant CHO-K1M cells. Exp Cell Res. 1981;132:23–30.

    Google Scholar 

  • Gunn SA, Gould TC, Anderson WAD. Cadmium-induced interstitial cell tumors in rats and mice and their prevention by zinc. J Natl Cancer Inst. 1963;31:745–59.

    Google Scholar 

  • Gunn SA, Gould TC, Anderson WAD. Selectivity of organ response to cadmium injury and various protective measures. J Pathol Bacteriol. 1968;96:89–96.

    Google Scholar 

  • Hagino N, Yoshioka K. A study on the cause of Itai-itai disease. J Jpn Orthop Assoc. 1961;35:812–5.

    Google Scholar 

  • Hart BA, Voss GW, Shatos MA, Doherty J. Cross-tolerance to hyperoxia following cadmium aerosol pretreatment. Toxicol Appl Pharmacol. 1990;103:255–70.

    Google Scholar 

  • Hildebrand CE, Tobey RA, Compbell EW, Enger MD. A cadmium-resistant variant of the Chinese hamster (CHO) cell with increased metallothionein induction capacity. Exp Cell Res. 1979;124:237–46.

    Google Scholar 

  • Hirano S, Tsukamoto N, Suzuki KT. Biochemical changes in the rat lung and liver following intratracheal instillation of cadmium oxide. Toxicol Lett. 1990;50:97–105.

    Google Scholar 

  • Holt D, Magos L, Webb M. The interaction of cadmium-induced rat renal metallothionein with divalent mercuryin vitro. Chem-Biol Interact. 1980;32:125–35.

    Google Scholar 

  • Hudecová A, Ginter E. The influence of ascorbic acid on lipid peroxidation in guinea pigs intoxicated with cadmium. Food Chem Toxicol. 1992;30:1011–3.

    Google Scholar 

  • IARC. Cadmium and cadmium compounds. In: IARC monographs on the evaluation of carcinogenic risks to humans, vol. supplement 7. Lyon, France: IARC; 1987:139–42.

    Google Scholar 

  • Jamall IS, Roque H. Cadmium-induced alterations in ocular trace elements. Influence of dietary selenium and copper. Biol Trace Elem Res. 1989;23:55–63.

    Google Scholar 

  • Jamall IS, Smith JC. Effects of cadmium on glutathione peroxidase, superoxide dismutase, and lipid peroxidation in the rat heart: A possible mechanism of cadmium cardiotoxicity. Toxicol Appl Pharmacol. 1985;80:33–42.

    Google Scholar 

  • Jamall IS, Sprowls JJ. Effects of cadmium and dietary selenium on cytoplasmic and mitochondrial antioxidant defense systems in the heart of rats fed high dietary copper. Toxicol Appl Pharmacol. 1987;87:102–10.

    Google Scholar 

  • Kadima W, Rabenstein DL. A quantitative study of the complexation of cadmium in hemolyzed human erythrocytes by1H NMR spectroscopy. J Inorg Biochem. 1990a;40:141–9.

    Google Scholar 

  • Kadima W, Rabenstein DL. Nuclear magnetic resonance studies of the solution chemistry of metal complexes. 26. Mixed ligand complexes of cadmium, nitrilotriacetic acid, glutathione, and related ligands. J Inorg Biochem. 1990b;38:277–88.

    Google Scholar 

  • Kadrabova J, Madaric A, Ginter E. The effect of ascorbic acid on cadmium accumulation in guinea pig tissues. Experientia. 1992;48:989–91.

    Google Scholar 

  • Kang YJ, Enger MD. Effect of cellular glutathione depletion on cadmium-induced cytotoxicity in human lung carcinoma cells. Cell Biol Toxicol. 1987;3:347–60.

    Google Scholar 

  • Kang YJ, Enger MD. Cadmium cytotoxicity correlates with the changes in glutathione content that occur during the logarithmic growth phase of A549-T27 cells. Toxicol Lett. 1990;51:23–8.

    Google Scholar 

  • Kang YJ, Clapper JA, Enger MD. Enhanced cadmium cytotoxicity in A549 cells with reduced glutathione levels is due to neither enhanced cadmium accumulation nor reduced metallothionein synthesis. Cell Biol Toxicol. 1989;5:249–59.

    Google Scholar 

  • Kang YJ, Nuutero ST, Clapper JA, Jenkins P, Enger MD. Cellular cadmium responses in subpopulations T20 and T27 of human lung carcinoma A549 cells. Toxicology. 1990;61:195–203.

    Google Scholar 

  • Kofod P, Bauer R, Danielsen E, Larsen E, Bjerrum MJ.113Cd-NMR investigation of a cadmium-substituted copper, zinc-containing superoxide dismutase from yeast. Eur J Biochem. 1991;198:607–11.

    Google Scholar 

  • Koizumi T, Li ZG. Role of oxidative stress in single-dose, cadmium-induced testicular cancer. J Toxicol Environ Health. 1992;37:25–36.

    Google Scholar 

  • Koizumi T, Li ZG, Tatsumoto H. DNA damaging activity of cadmium in Leydig cells, a target cell population for cadmium carcinogenesis in the rat testis. Toxicol Lett. 1992;63:211–20.

    Google Scholar 

  • Kojima S, Ishihara N, Hirukawa H, Kiyozumi M. Effect ofN-benzyl-D-glucamine dithiocarbamate on lipid peroxidation in testes of rats treated with cadmium. Res Commun Chem Pathol Pharmacol. 1990;67:259–69.

    Google Scholar 

  • Liu J, Kershaw WC, Klassen CD. The protective effect of metallothionein on the toxicity of various metals in rat primary hepatocyte culture. Toxicol Appl Pharmacol. 1991;107:27–34.

    Google Scholar 

  • Magos L, Webb M. Differences in distribution and excretion of selenium and cadmium or mercury after their simultaneous administration subcutaneously in equimolar doses. Arch Toxicol. 1976;36:63–9.

    Google Scholar 

  • Manca D, Ricard AC, Trottier B, Chevalier G. Studies on lipid peroxidation in rat tissues following administration of low and moderate doses of cadmium chloride. Toxicology. 1991;67:303–23.

    Google Scholar 

  • Martins EAL, Chubatsu LS, Meneghini R. Role of antioxidants in protecting cellular DNA from damage by oxidative stress. Mutat Res. 1991;250:95–101.

    Google Scholar 

  • Mason KE, Young JO, Brown JA. Effectiveness of selenium and zinc in protecting against cadmium-induced injury in the rat testis. Anat Rec. 1964;148:309.

    Google Scholar 

  • Mello-Filho AC, Chubatsu LS, Meneghini R. V79 Chinese hamster cells rendered resistant to high cadmium concentration also become resistant to oxidative stress. Biochem J. 1988;256:475–9.

    Google Scholar 

  • Merali Z, Singhal RL. Protective effect of selenium on certain hepatotoxic and pancreatic manifestations of subacute cadmium administration. J Pharmacol Exp Ther. 1975;195:58–66.

    Google Scholar 

  • Minami M, Koshi K, Homma K, Suzuki Y. Changes of the activity of superoxide dismutase after exposure to the fumes of heavy metals and the significance of zinc in the tissue. Arch Toxicol. 1982;49:215–25.

    Google Scholar 

  • Mukherjee A, Sharma A, Talukder G. Effect of selenium on cadmium-induced chromosomal aberrations in bone marrow cells of mice. Toxicol Lett. 1988;41:23–9.

    Google Scholar 

  • Müller L. Protective effects ofDL-alpha-lipoic acid on cadmium-induced deterioration of rat hepatocytes. Toxicology. 1989;58:175–85.

    Google Scholar 

  • Müller L, Menzel H. Studies on the efficacy of lipoate and dihydrolipoate in the alteration of cadmium2+ toxicity in isolated hepatocytes. Biochim Biophys Acta. 1990;1052:386–91.

    Google Scholar 

  • Müller T, Schuckelt R, Jaenicke L. Cadmium/zincmetallothionein induces DNA strand breaksin vitro. Arch Toxicol. 1991 65:20–6.

    Google Scholar 

  • Nomiyama K, Nomiyama H, Nomura Y et al. Effects of dietary cadmium on rhesus monkeys. Environ Health Perspect. 1979;28:223–43.

    Google Scholar 

  • Ochi T. Cadmium-resistant Chinese hamster V79 cells with decreased accumulation of cadmium. Chem-Biol Interact. 1991;78:207–21.

    Google Scholar 

  • Ochi T, Ohsawa M. Participation of active oxygen species in the induction of chromosomal aberrations by cadmium chloride in cultured Chinese hamster cells. Mutat Res. 1985;143:137–42.

    Google Scholar 

  • Ochi T, Ishiguro T, Ohsawa M. Participation of active oxygen species in the induction of DNA single-strand breaks scissions by cadmium chloride in cultured Chinese hamster cells. Mutat Res. 1983;122:169–75.

    Google Scholar 

  • Ochi T, Takahashi K, Ohsawa M. Indirect evidence for the induction of a prooxidant state by cadmium chloride in cultured mammalian cells and a possible mechanism for the induction. Mutat Res. 1987;180:257–66.

    Google Scholar 

  • Omaye ST, Tappel AL. Effect of cadmium chloride on the rat testicular soluble selenoenzyme, glutathione peroxidase. Res Commun Chem Pathol Pharmacol. 1975;12:695–711.

    Google Scholar 

  • Pharikal K, Das PC, Dey CD, Dasgupta S. Tissue ascorbate as a metabolic marker in cadmium toxicity. Int J Vitam Nutr Res. 1988;58:306–11.

    Google Scholar 

  • Probst FA, Bousquet WF, Miya TS. Correlation of hepatic metallothionein concentrations with acute cadmium toxicity in the mouse. Toxicol Appl Pharmacol. 1977;39:61–9.

    Google Scholar 

  • Prohaska JR, Mowafy M, Ganther HD. Interactions between cadmium, selenium and glutathione peroxidase in rat testis. Chem-Biol Interact. 1977;18:253–65.

    Google Scholar 

  • Rugstad HE, Norseth T. Cadmium resistance and content of cadmium-binding protein in cultured human cells. Nature. 1975;257:136–7.

    Google Scholar 

  • Rugstad HE, Norseth T. Cadmium resistance and content of cadmium-binding protein in two enzyme-deficient mutants of mouse fibroblasts (L-cells). Biochem Pharmacol. 1978;27:647–50.

    Google Scholar 

  • Sharma G, Nath R, Gill KD. Effect of ethanol on cadmium-induced lipid peroxidation and antioxidant enzymes in rat liver. Biochem Pharmacol. 1991;42:S9-S16.

    Google Scholar 

  • Sheabar FZ, Yannai S. Extracorporeal complexation and haemodialysis for the treatment of cadmium poisoning. I. Effects of four chelators on thein vitro elimination of cadmium from human blood. Pharmacol Toxicol. 1989;64:257–61.

    Google Scholar 

  • Shimizu M, Morita S. Effects of fasting on cadmium toxicity, glutathione metabolism, and metallothionein synthesis in rats. Toxicol Appl Pharmacol. 1990;103:28–39.

    Google Scholar 

  • Shinno JA. Cadmium-induced alterations in the antioxidant defense system of the rat eye in relation to dietary selenium intake. Biol Trace Elem Res. 1989;20:153–9.

    Google Scholar 

  • Shukla GS, Chandra SV. Cadmium toxicity and bioantioxidants: status of vitamin E and ascorbic acid of selected organs in rats. J Appl Toxicol. 1989;9:119–22.

    Google Scholar 

  • Shukla GS, Hussain T, Chandra SV. Possible role of regional superoxide dismutase activity and lipid peroxide levels in cadmium neurotoxicity:in vivo andin vitro studies in growing rats. Life Sci. 1987;41:2215–21.

    Google Scholar 

  • Singhal RK, Anderson ME, Meister A. Glutathione, a first line defense against cadmium toxicity. FASEB J. 1987;1:220–3.

    Google Scholar 

  • Snyder RD. Role of active oxygen species in metal-induced DNA strand breakage in human diploid fibroblasts. Mutat Res. 1988;193:237–46.

    Google Scholar 

  • Stacey NH. The amelioration of cadmium-induced injury in isolated hepatocytes by reduced glutathione. Toxicology. 1986;42:85–92.

    Google Scholar 

  • Sugawara N, Hirohata Y, Sugawara C. Testicular dysfunction induced by cadmium and its improvement caused by selenium in the mouse. J Environ Pathol Toxicol Oncol. 1989;9:54–63.

    Google Scholar 

  • Sugiyama M, Tsuzuki K, Haramaki N. DNA single strand breaks and cytotoxicity induced by sodium chromate(VI) in hydrogen peroxide resistant cell lines. Mutat Res. 1993;299:95–102.

    Google Scholar 

  • Takenaka S, Oldiges H, Konig H, Hochrainer D, Oberdörster G. Carcinogenicity of cadmium chloride aerosols in W rats. J Natl Cancer Inst. 1983;70:367–71.

    Google Scholar 

  • Tandon SK, Singh S, Dhawan M. Preventive effect of vitamin E in cadmium intoxication. Biomed Environ Sci. 1992;5:39–45.

    Google Scholar 

  • Thornalley PJ, Vasak M. Possible role for metallothionein in protection against radiation induced oxidative stress. Kinetics and mechanisms of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta. 1985;827:36–44.

    Google Scholar 

  • Vleet JFV, Boon GD, Ferrans VJ: Induction of lesions of selenium-vitamin E deficiency in ducklings fed silver, copper, cobalt, tellurium, cadmium, or zinc: protection by selenium or vitamin E supplements. Am J Vet Res. 1981;42:1206–17.

    Google Scholar 

  • Waalkes MP, Perantoni A. Isolation of a novel metal-binding protein from rat testes: Characterization and distinction from metallothionein. J Biol Chem. 1986;261:13079–103.

    Google Scholar 

  • Waalkes MP, Rehm S, Riggs CW et al. Cadmium carcinogenesis in male Wistar [Crl:(WI)BR] rats: Dose-response analysis of tumor induction in the prostate and testes, and at the injection site. Cancer Res. 1988;48:4656–63.

    Google Scholar 

  • Waalkes MP, Rehm S, Riggs CW et al. Cadmium carcinogenesis in male Wistar [Crl: (WI)BR] rats: Dose-response analysis of effects of zinc on tumor induction in the prostate, in the testes, and at the injection site. Cancer Res. 1989;49:4282–8.

    Google Scholar 

  • Waalkes MP, Oberdörster G. Cadmium carcinogenesis. In: Foulkes E, ed. Biological effects of heavy metals, vol. II: Mechanisms of metal carcinogenesis. Boca Raton, FL: CRC Press; 1990:129–57.

    Google Scholar 

  • Wahba ZZ, Hernandez L, Issaq HJ, Waalkes MP. Involvement of sulfhydryl metabolism in tolerance to cadmium in testicular cells. Toxicol Appl Pharmacol. 1990;104:157–66.

    Google Scholar 

  • Walters RA, Enger MD, Hildebrand CE, Griffith JK. Genes coding for metal induced synthesis of RNA sequences are differently amplified and regulated in mammalian cells. In: Brown DD, Fox CF, eds. Developmental biology using purified genes. New York: Academic Press; 1981. (ICN-UCLA symposia on molecular and cellular biology, vol. XXIII).

    Google Scholar 

  • Webb M. Binding of cadmium ions by rat liver and kidney. Biochem Pharmacol. 1972;21:2751–65.

    Google Scholar 

  • Zhong Z, Troll W, Koenig KL, Frenkel K. Carcinogenic sulfide salts of nickel and cadmium induce H2O2 formation by human polymorphonuclear leukocytes. Cancer Res. 1990;50:7564–70.

    Google Scholar 

Mercury

  • Baggett JM, Berndt WO. The effect of depletion of nonprotein sulfhydryls by diethyl maleate plus buthionine sulfoximine on renal uptake of mercury in the rat. Toxicol Appl Pharmacol. 1986;83:556–62.

    Google Scholar 

  • Benov LC, Benchev IC, Monovich OH. Thiol antidotes effect on lipid peroxidation in mercury-poisoned rats. Chem-Biol Interact. 1990;76:321–32.

    Google Scholar 

  • Betti C, Davini T, Barale R. Genotoxic activity of methyl mercury chloride and bimethyl mercury in human lymphocytes. Mutat Res. 1992;281:255–60.

    Google Scholar 

  • Cantoni O, Evans RM, Costa M. Similarity in the cytotoxic response of mammalian cells to mercury(II) and x-rays: DNA damage and glutathione depletion. Biochem Biophys Res Commun. 1982;108:614–9/

    Google Scholar 

  • Cantoni O, Christie NT, Swann A, Drath DB, Costa M. Mechanism of HgCl2 cytotoxicity in cultured mammalian cells. Mol Pharmacol. 1984;26:360–8.

    Google Scholar 

  • Costa M, Christie NT, Cantoni O, Zelikoff JT, Wang XW, Rossman TG. DNA damage by mercury compounds: an overview. In: Suzuki T, ed. Advances in mercury toxicology. New York: Plenum Press; 1991:255–73.

    Google Scholar 

  • Di Simplicio P, Gorelli M, Ciuffreda P, Leonzio C. The relationship between gamma-glutamyl transpeptidase and Hg levels in Se/Hg antagonism in mouse liver and kidney. Pharmacol Res. 1990;22:515–26.

    Google Scholar 

  • Dutczak WJ, Ballatori N. Gamma-glutamyltransferase-depenent biliary-hepatic recycling of methyl mercury in the guinea pig. J Pharmacol Exp Ther. 1992;262:619–23.

    Google Scholar 

  • Dutczak WJ, Clarkson TW, Ballatori N. Biliary-hepatic recycling of a xenobiotic: gallbladder absorption of methyl mercury. Am J Physiol. 1991;260:G873–80.

    Google Scholar 

  • Ganther HE. Modification of methylmercury toxicity and metabolism by selenium and vitamin E: possible mechanisms. Environ Health Perspect. 1978;25:71–6.

    Google Scholar 

  • Ganther HE. Interactions of vitamin E and selenium with mercury and silver. Ann NY Acad Sci. 1980;355:212–6.

    Google Scholar 

  • Girardi G, Elias MM. Effectiveness ofN-acetylcysteine in protecting against mercuric chloride-induced nephrotoxicity. Toxicology. 1991;67:155–64.

    Google Scholar 

  • Gyurasics A, Varga F, Gregus Z. Effect of arsenicals on biliary excretion of endogenous glutathione and xenobiotics with glutathione-dependent hepatobiliary transport. Biochem Pharmacol. 1991;41:937–44.

    Google Scholar 

  • Houser MT, Milner LS, Kolbeck PC, Wei SH, Stohs SJ. Glutathione monoethyl ester moderates mercuric chloride-induced acute renal failure. Nephron. 1992;61:449–55.

    Google Scholar 

  • Johnson DR. Role of renal cortical sulfhydryl groups in development of mercury-induced renal toxicity. J Toxicol Environ Health. 1982;9:119–26.

    Google Scholar 

  • Kerper LE, Ballatori N, Clarkson TW. Methylmercury transport across the blood-brain barrier by an amino acid carrier. Am J Physiol. 1992;262:R761–5.

    Google Scholar 

  • Kojima K, Fujita M. Summary of recent studies in Japan on methyl mercury poisoning. Toxicology. 1973;1:43–62.

    Google Scholar 

  • Kudo A, Miyahara S. Effect of decontamination project at Minamata bay, Japan. Ecotoxicol Environ Saf. 1988;15:339–43.

    Google Scholar 

  • Liu Y, Cotgreave I, Atzori L, Grasfstrom RC. The mechanism of Hg2+ toxicity in cultured human oral fibroblasts: the involvement of cellular thiols. Chem-Biol Interact. 1992;85:69–78.

    Google Scholar 

  • Livardjani F, Ledig M, Kopp P, Dahlet M, Leroy M, Jaeger A. Lung and blood superoxide dismutase activity in mercury vapor exposed rats: effect ofN-acetylcysteine treatment. Toxicology. 1991;66:289–95.

    Google Scholar 

  • Lund B-O, Miller DM, Woods JS. Mercury-induced H2O2 production and lipid peroxidationin vitro in rat kidney mitochondria. Biochem Pharmacol. 1991;42 Suppl:S181–7.

    Google Scholar 

  • Molin M, Bergman B, Marklund SL, Schutz A, Skerfving S. Mercury, selenium, and glutathione peroxidase before and after amalgam removal in man. Acta Odontol Scand. 1990;48:189–202.

    Google Scholar 

  • Naganuma A, Anderson ME, Meister A. Cellular glutathione as a determinant of sensitivity to mercuric chloride toxicity. Prevention of toxicity by giving glutathione monoester. Biochem Pharmacol. 1990;40:693–7.

    Google Scholar 

  • Richardson RJ, Murphy SD Effect of glutathione depletion on tissue deposition of methylmercury in rats. Toxicol Appl Pharmacol. 1975;31:505–19.

    Google Scholar 

  • Sarafian T, Verity MA. Oxidative mechanisms underlying methyl mercury neurotoxicity. Int J Dev Neurosci. 1991;9:147–53.

    Google Scholar 

  • Study Group of Minamata Disease. Minamata disease. Japan: Kumamoto University; 1968.

    Google Scholar 

  • Suda I, Totoki S, Takahashi H Degradation of methyl and ethyl mercury into inorganic mercury by oxygen free radical-producing systems: involvement of hydroxyl radical. Arch Toxicol. 1991;65:129–34.

    Google Scholar 

  • Suda I, Takahashi H. Degradation of methyl and ethyl mercury into inorganic mercury by other reactive oxygen species besides hydroxyl radical. Arch Toxicol. 1992;66:34–9.

    Google Scholar 

  • Sugiyama M, Tsuzuki K, Haramaki N. DNA single strand breaks and cytotoxicity induced by sodium chromate(VI) in hydrogen peroxide resistant cell lines. Mutat Res. 1993;299:95–102.

    Google Scholar 

  • Tanaka T, Naganuma A, Imura N. Role of gamma-glutamyltranspeptidase in renal uptake and toxicity of inorganic mercury in mice. Toxicology. 1990;60:187–98.

    Google Scholar 

  • Tanaka T, Naganuma A, Kobayashi K, Imura N. An explanation for strain and sex differences in renal uptake of methylmercury in mice. Toxicology. 1991;69:317–29.

    Google Scholar 

  • Tanaka-Kagawa T, Naganuma A, Imura N. Tubular secretion and reabsorption of mercury compounds in mouse kidney. J Pharmacol Exp Ther. 1993;264:776–82.

    Google Scholar 

  • Vimy MJ, Lorscheider FL. Intra-oral air mercury released from dental amalgam. J Dent Res. 1985;64:1069–71.

    Google Scholar 

  • Watanabe T, Shimada T, Endo A. Effects of mercury compounds on ovulation and meiotic and mitotic chromosome division in female golden hamster. Teratology. 1982;25:381–4.

    Google Scholar 

  • Woods JS, Calas CA, Aicher LD, Robinson BH, Mailer C. Stimulation of porphyrinogen oxidation by mercuric ion. I. Evidence of free radical formation in the presence of thiols and hydrogen peroxide. Mol Pharmacol. 1990a;38:253–60.

    Google Scholar 

  • Woods JS, Calas CA, Aicher LD. Stimulation of porphyrinogen oxidation by mercuric ion. II Promotion of oxidation from the interaction of merouric ion, glutathione, and mitochondria-generated hydrogen peroxide. Mol Pharmacol. 1990b;38:261–6.

    Google Scholar 

  • Woods JS, Davis HA, Baer NP. Enhancement of gammaglutamylcysteine synthetase mRNA in rat kidney by methyl mercury. Arch Biochem Biophys 1992;296:350–3.

    Google Scholar 

  • Yasutake A, Hirayama K, Inoue M. Mechanism of urinary excretion of methylmercury in mice. Arch Toxicol. 1989;63:479–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugiyama, M. Role of cellular antioxidants in metal-induced damage. Cell Biol Toxicol 10, 1–22 (1994). https://doi.org/10.1007/BF00757183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00757183

Keywords

Navigation