Advertisement

General Relativity and Gravitation

, Volume 10, Issue 1, pp 7–30 | Cite as

Momentum and angular momentum in theH-space of asymptotically flat, Einstein-Maxwell space-times

  • William Hallidy
  • Malcolm Ludvigsen
Research Articles

Abstract

We propose new definitions for the momentum and angular momentum of Einstein-Maxwell fields that overcome the deficiencies of earlier definitions of these terms and are appropriate to the newH-space formulations of space-time. We make our definitions in terms of the Winicour-Tamburino linkages applied to the good cuts of CI+. Our transformations between good cuts then correspond to the translations and “Lorentz” transformations at points inH-space. For the special case of Robinson-Trautman typeII space-times, we show that our definitions of momentum and angular momentum yield the previously published results of Ludvigsen.

Keywords

Angular Momentum Differential Geometry Early Definition Momentum Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lind, R. W., Messmer, J., and Newman, E. T. (1972).J. Math. Phys.,13, 1879.Google Scholar
  2. 2.
    Sachs, R. (1962).Proc. R. Soc. London Ser. A,270, 103.Google Scholar
  3. 3.
    Newman, E. T., and Unti, T. (1962).J. Math. Phys.,3, 891.Google Scholar
  4. 4.
    Sachs, R. (1962).Phys. Rev.,128, 2851.Google Scholar
  5. 5.
    Sachs, R. (1964). InRelativity, Groups, and Topology, ed. C. deWitt and B. de Witt (Gordon and Breach, New York).Google Scholar
  6. 6.
    Tamburino, L., and Winicour, J. (1966).Phys. Rev.,150, 1039.Google Scholar
  7. 7.
    Winicour, J. (1968).J. Math. Phys.,9, 861.Google Scholar
  8. 8.
    Penrose, R. (1968). InBattelle Rencontres, ed. C. de Witt and J. Wheeler (W. A. Benjamin, New York).Google Scholar
  9. 9.
    Bramson, B. (1975).Proc. R. Soc. London Ser. A,341, 463.Google Scholar
  10. 10.
    Bondi, H., van der Burg, M., and Metzner, A. (1962).Proc. R. Soc. London Ser. A,269, 21.Google Scholar
  11. 11.
    Hansen, R. O., and Ludvigsen, M. (1977).Gen. Rel. Grav.,8, 761.Google Scholar
  12. 12.
    Newman, E. T. (1976).Gen. Rel. Grav.,7, 107.Google Scholar
  13. 13.
    Ko, M., Newman, E. T., and Tod, P. (1977). InProceedings of the Symposium on Asymptotic Structure of Space-Time, ed. F. P. Esposito and L. Witten (Plenum Press, New York).Google Scholar
  14. 14.
    Newman, E. T., and Penrose, R. (1962).J. Math. Phys.,3, 556; errata4 (1963), 998.Google Scholar
  15. 15.
    Ludvigsen, M. (1976). Ph.D. Dissertation, University of Newcastle upon Tyne.Google Scholar
  16. 16.
    Ludvigsen, M. (1977).Gen. Rel. Grav.,8, 357.Google Scholar
  17. 17.
    Penrose, R. (1964). InRelativity, Groups, and Topology, ed. C. deWitt and B. de Witt (Gordon and Breach, New York).Google Scholar
  18. 18.
    Newman, E. T., and Penrose, R. (1966).J. Math. Phys.,7, 863.Google Scholar
  19. 19.
    Geroch, R., Held, A., and Penrose, R. (1973).J. Math. Phys.,14, 874.Google Scholar
  20. 20.
    Penrose, R. (1965).Proc. R. Soc. London Ser. A,284, 159.Google Scholar
  21. 21.
    Ko, M., Ludvigsen, M., Newman, E. T., and Tod, P. (1977). “The Theory of H-Space” (preprint).Google Scholar
  22. 22.
    Newman, E. T., and Posadas, R. (1969).Phys. Rev.,187, 1784.Google Scholar
  23. 23.
    Lind, R. W., and Newman, E. T. (1974).J. Math. Phys.,15, 1103.Google Scholar
  24. 24.
    Plebanski, J. F., and Robinson, I. (1976).Phys. Rev. Lett.,37, 493.Google Scholar
  25. 25.
    Robinson, I., and Trautman, A. (1962).Proc. R. Soc. London Ser. A,265, 463.Google Scholar
  26. 26.
    Synge, J., and Schild, A. (1949).Tensor Calculus (University of Toronto Press, Toronto).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • William Hallidy
    • 1
  • Malcolm Ludvigsen
    • 2
  1. 1.Department of Physical ScienceCalifornia State CollegeCalifornia
  2. 2.Department of Physics and AstronomyUniversity of PittsburghPittsburgh

Personalised recommendations