General Relativity and Gravitation

, Volume 23, Issue 10, pp 1143–1150 | Cite as

The axially symmetric non-rotating vacuum solutions of Rosen's equations

  • Yuri Bozhkov
Research Articles
  • 38 Downloads

Abstract

It is shown that all axially symmetric non-rotating solutions of Rosen's field equations can be expressed in terms of two harmonic functions as well as that the total energy of Rosen's metric isMc2.

Keywords

Total Energy Harmonic Function Rosen Field Equation Differential Geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosen, N. (1973).Gen. Rel. Grav.,4, 435.Google Scholar
  2. 2.
    Rosen, N. (1974).Ann. Phys. (N.Y.),84, 455.Google Scholar
  3. 3.
    Will, C. M. (1981).Theory and Experiment in Gravitational Physics, (Cambridge University Press, Cambridge).Google Scholar
  4. 4.
    Stoeger, W. R. (1983). InProceedings of the III Marcel Grossmann meeting in General Relativity, Hu Ning, ed. (North Holland Publishing Company, Amsterdam).Google Scholar
  5. 5.
    Stoeger, W. R., Whitman, A. P., Knill, R. J. (1985).J. Math. Phys.,26, 2032.Google Scholar
  6. 6.
    Whitman, A. P., Knill, R. J., Stoeger, W. R. (1986).Int. J. Theor. Phys.,25, 1139.Google Scholar
  7. 7.
    Knill, R. J., Stoeger, W. R., Whitman, A. P. (1988).Int. J. Theor. Phys.,27, 283.Google Scholar
  8. 8.
    Anastassov, A. H. (1973).Nuovo Cimento,17B, 89; Anastassov, A. H., Vesselinov, S. G. (1973).Nuovo Cimento,17B, 94.Google Scholar
  9. 9.
    Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, E. (1980).Exact Solutions of Einstein's Field Equations (Cambridge University Press, Cambridge).Google Scholar
  10. 10.
    Islam, J. N. (1985).Rotating Fields in General Relativity, (Cambridge University Press, Cambridge).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Yuri Bozhkov
    • 1
  1. 1.International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations