Advertisement

General Relativity and Gravitation

, Volume 25, Issue 7, pp 663–672 | Cite as

Cohomological gravity

  • Danny Birmingham
  • Mark Rakowski
Research Articles
  • 43 Downloads

Abstract

We construct a theory of cohomological gravity in arbitrary dimensions based upon a local vector supersyrnmetry algebra. The observables in this theory are polynomial, but generally non-local operators, and have a natural interpretation in terms of a universal bundle for gravity. As such, their correlation functions correspond to cohomology classes on moduli spaces of Riemannian connections. In this uniformization approach different moduli spaces are obtained by introducing curvature singularities on codimension two submanifolds via a puncture operator. This puncture operator is constructed from a naturally occurring differential form of co-degree two in the theory, and we are led to speculate on connections between this continuum quantum field theory, and the discrete Regge calculus.

Keywords

Field Theory Correlation Function Quantum Field Theory Modulus Space Differential Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Witten, E. (1988).Nucl. Phys. B 311, 46.Google Scholar
  2. 2.
    Roček, M., and van Nieuwenhizizen, P. (1986).Class. Quant. Grav. 3, 43; Achúicarro, A., and Townsend, P. K. (1986)Phys. Lett. 180B, 89.Google Scholar
  3. 3.
    Rovelli, C., and Smolin, L. (1990)Nucl. Phys. B 331 80.Google Scholar
  4. 4.
    Witten, E. (1988).Phys. Lett. 206B, 601.Google Scholar
  5. 5.
    Witten, E. (1988).Commun. Math. Phys. 117, 353.Google Scholar
  6. 6.
    Birmingham, D., and Rakowski, M. (1991).Phys. Lett. 272B, 217.Google Scholar
  7. 7.
    Birmingham, D., and Rakowski, M. (1991).Phys. Lett. 272B, 223.Google Scholar
  8. 8.
    Birmingham, D., and Rakowski, M. (1991).Phys. Lett. 273B, bd74.Google Scholar
  9. 9.
    Birmingham, D., and Rakowski, M. (1992).Phys. Lett. 275B, 289.Google Scholar
  10. 10.
    Verlinde, E., and Verlinde, H. (1991).Nucl. Phys. B 348, 457.Google Scholar
  11. 11.
    Regge, T. (1961).Nuovo Cimento 19, 558.Google Scholar
  12. 12.
    MacDowell, S. (1979).Phys. Lett. 80B, 212.Google Scholar
  13. 13.
    Dijkgraaf, R., Verlinde, E., and Verlinde, H. (1991).Nucl. Phys. B 352, 59.Google Scholar
  14. 14.
    Atiyah, M. F., and Singer, I. M. (1984).Proc. Nat. Acad. Sci. (USA) 81, 2597.Google Scholar
  15. 15.
    Witten, E. (1990).Nucl. Phys. B 340, 281.Google Scholar
  16. 16.
    Rabin, J. (1982).Nucl. Phys. B 201, 315.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Danny Birmingham
    • 1
  • Mark Rakowski
    • 2
  1. 1.CERNTheory DivisionGeneva 23Switzerland
  2. 2.Institut für PhysikJohannes-Gutenberg-UniversitätMainzGermany

Personalised recommendations