Skip to main content
Log in

The affine geometry of the Lanczos H-tensor formalism

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We identify the fiber-bundle-with-connection structure that underlies the Lanczos H-tensor formulation of Riemannian geometrical structure. We consider linear connections to be type (1,2) affine tensor fields, and we sketch the structure of the appropriate fiber bundle that is needed to describe the differential geometry of such affine tensors, namely the affine frame bundleA 21 M with structure groupA 21 (4) =GL(4) ⓈT 21 4 over spacetimeM. Generalized affine connections on this bundle are in 1-1 correspondence with pairs(Γ, K) onM, where thegl(4)-componentΓ denotes a linear connection and the T 21 4-componentK is a type (1,3) tensor field onM. We show that the Lanczos H-tensor arises from a gauge fixing condition on this geometrical structure. The resulting translation gauge, theLanczos gauge, is invariant under the transformations found earlier by Lanczos. The other Lanczos variablesQ μmandq are constructed in terms of the translational component of the generalized affine connection in the Lanczos gauge. To complete the geometric reformulation we reconstruct the Lanczos Lagrangian completely in terms of affine invariant quantities. The essential field equations derived from ourA 21 (4)-invariant Lagrangian are the Bianchi and Bach-Lanczos identities for four-dimensional Riemannian geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weyl, H. (1918).Math. Zeit. 2, 384.

    Google Scholar 

  2. Géhéniau, J. and Debever, R. (1956).Bull. Acad. Roy. Belg., CL des SC 42, 114,252,313,608.

    Google Scholar 

  3. Lanczos, C. (1962).Rev. Mod. Phys. 34, 379.

    Google Scholar 

  4. Lanczos, C. (1938).Ann. Math. 39, 842.

    Google Scholar 

  5. Nash, C. and Sen S. (1983).Topology and Geometry for Physicists (Academic Press, London, New York).

    Google Scholar 

  6. Takeno, H. (1964).Tensor 15, 103.

    Google Scholar 

  7. Novello, M. and Velloso, A. (1987).Gen. Rel. Grav. 19, 1251.

    Google Scholar 

  8. Atkins, W. K. and Davis, W. R. (1980).Il Nuovo Cimento 59B, 116.

    Google Scholar 

  9. Bampi, E. and Caviglia, G. (1983).Gen. Rel Grav. 15, 375.

    Google Scholar 

  10. Roberts, M. D. (1989).Mod. Phys. Lett. 4A, 2739.

    Google Scholar 

  11. Bach, R. (1921).Math. Zeit. 9, 110.

    Google Scholar 

  12. Norris, L. K. (1985).Phys. Rev. D 31, 3090.

    Google Scholar 

  13. Yang, C. N. (1974).Phy. Rev. Lett. 33, 445.

    Google Scholar 

  14. Dodson, C. T. J. and Poston, T. (1977).Tensor Geometry (Pitman, London).

    Google Scholar 

  15. Kobayashi, S., and Nomizu, K. (1963).Foundations of Differential Geometry (Interscience, New York), vol. 1.

    Google Scholar 

  16. Chilton, J. H. and Norris, L. K. (1992).Int. J Theor. Phys. 31, 1267.

    Google Scholar 

  17. Kheyfets, A., and Norris, L. K. (1988).Int. J. Theor. Phys. 27, 159.

    Google Scholar 

  18. Norris, L. K. (1991).Int. J. Theor. Phys. 30, 1127.

    Google Scholar 

  19. Fairchild, E. E. Jr. (1976).Phy. Rev. D 14, 384.

    Google Scholar 

  20. Synge, J. L. (1960).Relativity: The General Theory (North-Holland, Amsterdam).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammon, K.S., Norris, L.K. The affine geometry of the Lanczos H-tensor formalism. Gen Relat Gravit 25, 55–80 (1993). https://doi.org/10.1007/BF00756929

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00756929

Keywords

Navigation