General Relativity and Gravitation

, Volume 23, Issue 11, pp 1251–1264 | Cite as

The age problem in inhomogeneous universes

  • Stefan Bildhauer
  • Toshifumi Futamase
Research Articles


Recent determinations of globular cluster ages imposes severe problems for the standard cosmological models. Before introducing a cosmological constant, other possibilities of solving the problem should be investigated carefully. In this paper, the backreactions of inhomogeneities in realistic, clumpy universes and their influence on age determinations are studied. Applying a recently developed approximation scheme, it is shown that the backreactions lead to an underestimation of the age of the universe as inferred from a measurement of today's Hubble parameter. Observations of the cosmic microwave background radiation impose constraints on the parameters. For a simple model within the framework of pancake theory for structure formation on a flat expanding background, it is shown that the age problem may be solved by taking into account the backreactions of inhomogeneities in an averaged sense. No cosmological constant is needed.


Radiation Microwave Simple Model Structure Formation Cosmological Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrow, J. D., Juszkiewicz, R., Sonoda, D. H. (1985).Mon. Not. R. Astr. Soc.,213, 917.Google Scholar
  2. 2.
    Bildhauer, S. (1990).Prog. Theor. Phys.,84, 444.Google Scholar
  3. 3.
    Bildhauer, S., Futamase, T. (1991).Mon. Not. R. Astr. Soc.,249, 126.Google Scholar
  4. 4.
    Borner, G. (1988).The Early Universe: Facts and Fiction (Springer-Verlag, Berlin).Google Scholar
  5. 5.
    Broadhurst, T. J., Ellis, R. S., Koo, D. C., Szalay, A. S. (1990).Nature,343, 726.Google Scholar
  6. 6.
    Buchert, T. (1989).Astron. Astrophys.,223, 9.Google Scholar
  7. 7.
    Buchert, T. (1990).Astrophys. Space Science,171, 141.Google Scholar
  8. 8.
    Deng, Y., Mannheim, P. D. (1990).Phys. Rev. D,42, 371.Google Scholar
  9. 9.
    Fukugita, M., Hogan, C. (1990).Nature,347, 120.Google Scholar
  10. 10.
    Futamase, T. (1988).Phys. Rev. Lett.,61, 2175.Google Scholar
  11. 11.
    Futamase, T. (1989).Mon. Not. R. Astr. Soc.,237, 187.Google Scholar
  12. 12.
    Futamase, T., and Sasaki, M. (1989).Phys. Rev. D,40, 2502.Google Scholar
  13. 13.
    Kashlinsky, A., Jones, B. J. T. (1991).Nature,349, 753.Google Scholar
  14. 14.
    Peebles, P. J. E. (1980).The Large Scale Structure of the Universe (Princeton University Press, Princeton).Google Scholar
  15. 15.
    Sandage, A., Cacciari, C. (1990).Astrophys. J.,350, 645.Google Scholar
  16. 16.
    Strukov, I. A., et al. (1987). InIAU Symposium 130, J. Audouze, M.-C. Pelletan, A. Szalay, eds. (Reidel, Dordrecht).Google Scholar
  17. 17.
    Weinberg, S. (1971).Astrophys. J.,178, 175.Google Scholar
  18. 18.
    Weinberg, S. (1972).Gravitation and Cosmology (Wiley, New York).Google Scholar
  19. 19.
    Zel'dovich, Ya. B. (1970).Astron. Astrophys.,5, 84.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Stefan Bildhauer
    • 1
    • 2
  • Toshifumi Futamase
    • 1
  1. 1.Department of Physics, Faculty of ScienceHirosaki UniversityAomori-kenJapan
  2. 2.Max-Planck-Institut für AstrophysikGarching bei MünchenGermany

Personalised recommendations