Advertisement

General Relativity and Gravitation

, Volume 23, Issue 12, pp 1363–1383 | Cite as

Algebraic invariant curves in cosmological dynamical systems and exact solutions

  • C. G. Hewitt
Research Articles

Abstract

The Einstein field equations for a number of classes of cosmological models have previously been written as polynomial systems of ordinary differential equations. We show that, for restricted parameter values, these equations admit algebraic invariant curves, which, in turn, lead to exact solutions of the field equations. This property explains the recent discovery of a number of exact solutions and is used to produce additional ones.

Keywords

Differential Equation Dynamical System Exact Solution Ordinary Differential Equation Field Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hsu, L., and Wainwright, J. (1986).Class. Quant. Grav. 3, 1105.Google Scholar
  2. 2.
    Hewitt, C. G., and Wainwright, J. (1990).Class. Quant. Grav. 7, 2295.Google Scholar
  3. 3.
    Ellis, G. F. R., and MacCallum, M. A. H. (1969).Commun. Math. Phys.,12, 108.Google Scholar
  4. 4.
    MacCallum, M. A. H. (1973). InCargèse Lectures in Physics,6, ed. E. Schatzman, (Gordon and Breach, New York).Google Scholar
  5. 5.
    Hirsch, M. W., and Smale, S. (1974).Differential Equations, Dynamical Systems and Linear Algebra (Academic Press, San Diego).Google Scholar
  6. 6.
    Guckenheimer, J., and Holmes, P. (1983).Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, Berlin).Google Scholar
  7. 7.
    Nemytskii, V. V., and Stepanov, V. V. (1960).Qualitative Theory of Differential Equations (Princeton University Press, Princeton).Google Scholar
  8. 8.
    Wiggins, S. (1990).Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer-Verlag, Berlin).Google Scholar
  9. 9.
    Wainwright, J. and Hsu, L. (1989).Class. Quant. Grav. 6, 1409.Google Scholar
  10. 10.
    Hewitt, C. G., Wainwright, J., and Goode, S. W. (1988).Class. Quant. Grav. 5, 1313.Google Scholar
  11. 11.
    Hewitt, C. G., Wainwright, J., and Glaum, M. (1990). “Qualitative Analysis of a Class of Inhomogeneous Self-Similar Cosmological Models II,”Class. Quantum Grav., to appear.Google Scholar
  12. 12.
    Darboux, G. (1878).Bull. des Sc. Math. 2, 60, 123, 151.Google Scholar
  13. 13.
    Walker, R. J. (1950).Algebraic Curves (Princeton University Press, Princeton).Google Scholar
  14. 14.
    Singer, M. F. (1990).J. Symb. Comp. 10, 59.Google Scholar
  15. 15.
    Collins, C. B. (1971).Commun. Math. Phys.,23, 137.Google Scholar
  16. 16.
    Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, E. (1980).Exact Solutions of Einstein's Field Equations (Cambridge University Press, Cambridge).Google Scholar
  17. 17.
    Nayak, B. K., and Bhuyan, G. B. (1986).Gen. Rel. Grav. 18, 79.Google Scholar
  18. 18.
    Uggla, C., and Rosquist, K. (1990).Class. Quant. Grav. 7, L279.Google Scholar
  19. 19.
    Goode, S. W., and Wainwright, J. (1985).Class. Quant. Grav. 2, 99.Google Scholar
  20. 20.
    Hanquin, J. L., and Demaret, J. (1984).Class. Quant. Grav. 1, 291.Google Scholar
  21. 21.
    Wainwright, J., Ince, W. C. W., and Marshman, B. J. (1979).Gen. Rel. Grav. 10, 259.Google Scholar
  22. 22.
    Wainwright, J., and Goode, S. W. (1980).Phys. Rev. D 22, 1906.Google Scholar
  23. 23.
    Van den Bergh, N., (1988).Class. Quant. Grav. 5, 167.Google Scholar
  24. 24.
    Feinstein, A., and Senovilla, J. M. M. (1989).Class. Quant. Grav. 6, L89.Google Scholar
  25. 25.
    Senovilla, J. M. M. (1990).Phys. Rev. Lett. 64, 2219.Google Scholar
  26. 26.
    Barrow, J. D., and Sonoda, D. H. (1986).Phys. Rep. 139, 1.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • C. G. Hewitt
    • 1
  1. 1.Department of Applied MathematicsUniversity of WaterlooCanada

Personalised recommendations