Advertisement

General Relativity and Gravitation

, Volume 14, Issue 10, pp 831–834 | Cite as

A description of the gravitational red shift borrowed from the electrodynamics of continuous media

  • F. Pegoraro
Research Articles

Abstract

The description of the effects of a gravitational field on the classical electromagnetic field equations in terms of generalized electric and magnetic permittivities is shown to define an “equivalent” medium with special properties. In particular it is remarked that such a medium can be chosen so as to include the behavior, in the presence of gravity, of the bodies that are used to produce and to detect the electromagnetic field. This is illustrated by the example of the gravitational red shift. The introduction of the proper time of the emitting and of the absorbing atoms, at rest in the gravitational field, is shown to define a medium interacting with the electromagnetic field through a drag velocity which increases linearly with time. For the sake of simplicity this example is described in the weak-field approximation.

Keywords

Electromagnetic Field Special Property Field Equation Differential Geometry Gravitational Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Landau, L. D., and Lifshitz, E. M. (1962).The Classical Theory of Fields, Pergamon Press, Oxford.Google Scholar
  2. 2.
    Møller, C. (1969).The Theory of Relativity, Oxford University Press, Oxford.Google Scholar
  3. 3.
    Skrotskii, G. V. (1957).Sov. Phys. Dokl,2, 266.Google Scholar
  4. 4.
    Balazs, N. L. (1958).Phys. Rev.,110, 236.Google Scholar
  5. 5.
    Plebanski, J. (1960).Phys. Rev.,118, 1396.Google Scholar
  6. 6.
    Bertotti, B. (1966).Proc. R. Soc. London Ser. A,269, 195.Google Scholar
  7. 7.
    Volkov, A. M., and Kiselev, V. A. (1970).Sov. Fiz. JETP,30, 733.Google Scholar
  8. 8.
    de Felice, F. (1971).Gen. Rel. Grav.,2, 347.Google Scholar
  9. 9.
    Volkov, A. M., Izmest'ev, A. A., and Skrotskii, G. V. (1971).Sov.Fiz. JETP,32, 686.Google Scholar
  10. 10.
    See also the discussion given in Lightman, A. P., and Lee, D. L. (1972).Phys. Rev. D,8, 364.Google Scholar
  11. 11.
    Pegoraro, F., Picasso, E., Radicati, L. A. (1978).J. Phys. A. Math. Gen.,11, 1949.Google Scholar
  12. 12.
    Pegoraro, F., Radicati, L. A., Bernard, Ph., and Picasso, E. (1978).Phys. Lett.,68A, 165.Google Scholar
  13. 13.
    Pegoraro, F., and Radicati, L. A. (1980).J. Phys. A. Math. Gen.,13, 2411.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • F. Pegoraro
    • 1
  1. 1.Scuola Normale SuperiorePisaItaly

Personalised recommendations