General Relativity and Gravitation

, Volume 10, Issue 2, pp 129–148 | Cite as

Orbital equations in the relativistic two-body problem

  • G. O'Brien
Research Articles


Synge's approximation method is applied to derive the orbital equations for a binary system consisting of two rotating, spherical, rigid bodies of comparable mass and radius. Approximations are based on the weakness of the field and on the distance between the bodies being considered large by comparison with their radii.


Approximation Method Binary System Rigid Body Differential Geometry Comparable Mass 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McCrea, J. D., and O'Brien, G. (1978).Gen. Rel. Grav.,9, 1101.Google Scholar
  2. 2.
    Synge, J. L. (1970).Proc. R. Ir. Acad. Sect. A,69, 11.Google Scholar
  3. 3.
    Barker, B. M., and O'Connell, R. F. (1975).Phys. Rev. D,12, 329.Google Scholar
  4. 4.
    Börner, G., Ehlers, J., and Rudolph, E. (1975).Astron. Astrophys.,44, 417.Google Scholar
  5. 5.
    Cho, C. F., and Hari Dass, N. D. (1916).Ann. Phys. (N.Y.),96, 406.Google Scholar
  6. 6.
    Spyrou, N. (1977).Gen. Rel. Grav.,8, 197.Google Scholar
  7. 7.
    Hogan, P. A., and McCrea, J. D. (1974).Gen. Rel. Grav.,5, 79.Google Scholar
  8. 8.
    Barker, B. M., Gupta, S. N., and Haracz, R. D. (1966).Phys. Rev.,149, 1027.Google Scholar
  9. 9.
    Barker, B. M., and O'Connell, R. F. (1970).Phys. Rev. D,2, 1428.Google Scholar
  10. 10.
    Papapetrou, A. (1951).Proc. Phys. Soc. A,64, 57.Google Scholar
  11. 11.
    Haywood, J. H. (1956).Proc. Phys. Soc. A,69, 2.Google Scholar
  12. 12.
    Tulczyjew, W. (1959).Acta. Phys. Polon.,18, 37.Google Scholar
  13. 13.
    Infeld, L. (1954).Acta. Phys. Polon.,13, 187.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • G. O'Brien
    • 1
  1. 1.School of Theoretical PhysicsDublin Institute for Advanced StudiesDublin 4

Personalised recommendations