General Relativity and Gravitation

, Volume 10, Issue 9, pp 731–741 | Cite as

Strong gravity and weak interactions

  • V. De Sabbata
  • M. Gasperini
Research Articles

Abstract

The strong gravity contribution to the nucleonic axial-vector form factor is evaluated in the nonrelativistic limit and in the approximation of exactSU3 symmetry. It is suggested also that the anomalous experimental results on the value of the axial coupling constant, in very light nuclei, may be explained as being an effect due to strong gravitational interactions.

Keywords

Form Factor Weak Interaction Differential Geometry Light Nucleus Gravitational Interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jarlskog, C. (1974). “Phenomenology of weak interactions,” § 6, Proceedings of the 1974 Cern School of Physics, CERN 74-72, Geneva.Google Scholar
  2. 2.
    Bernstein, J. (1968).Elementary Particles and their Currents, (Freeman and Company, San Francisco), Chaps. 9 and 10.Google Scholar
  3. 3.
    Delbourgo, R. and Salam, A. (1972).Phys. Lett.,40B, 381.Google Scholar
  4. 4.
    Salam, A. (1971). “Nonpolynomial Lagrangians, renormalization and gravity,” inLectures from the Coral Gables Conferences on Fundamental Interactions, January 1971, (Gordon and Breach, New York), Vol. 1, p. 3.Google Scholar
  5. 5.
    Isham, C. (1971). “Strong gravity,” inLectures from the Coral Gables Conferences on Fundamental Interactions (Gordon and Breach, New York), p. 95.Google Scholar
  6. 6.
    Griffiths, J. B., and Newing, R. (1970).J. Phys.,3A, 136.Google Scholar
  7. 7.
    Vitale, A. Bertin, A., and Carboni, G. (1975).Phys. Rev. D,11, 2441.Google Scholar
  8. 8.
    Sivaram, C. and Sinha, K. (1974).Lett. Nuovo Cimento,9, 704.Google Scholar
  9. 9.
    Sakurai, J. (1967).Advanced Quantum Mechanics (Addison-Wesley, Reading, Masssa chusetts), Chap. 3, p. 167.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • V. De Sabbata
    • 1
  • M. Gasperini
    • 1
  1. 1.Istituto di Fisica dell'Università di BolognaBolognaItaly

Personalised recommendations