Advertisement

General Relativity and Gravitation

, Volume 9, Issue 12, pp 1119–1128 | Cite as

An approximation scheme for scalar waves in a Schwarzschild geometry

  • W. E. Couch
  • R. J. Torrence
Research Articles

Abstract

The Schwarzschild geometry is approximated by a certain set of conformally flat shells. As an example of the use of this approximation, the transmission coefficientT for spherical waves of monochromatic scalar radiation imploding on the black hole is calculated by solving the scalar wave equation within each conformally flat space and matching across the interfaces. The results agree with those of other authors for low and high frequencies and give values ofT at all intermediate frequencies.

Keywords

Radiation Black Hole Wave Equation Differential Geometry Approximation Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kundt, W., and Newman, E. T. (1968).J. Math. Phys.,9, 2193.Google Scholar
  2. 2.
    Matzner, R. (1968).J. Math. Phys.,9, 163.Google Scholar
  3. 3.
    Persides, S. (1974).J. Math. Phys.,15, 885.Google Scholar
  4. 4.
    Sanchez, N. G. (1976).J. Math. Phys.,17, 688.Google Scholar
  5. 5.
    Unruh, W. G. (1976).Phys. Rev. D,14, 3251.Google Scholar
  6. 6.
    Price, R. H. (1972).Phys. Rev. D,5, 2439.Google Scholar
  7. 7.
    Bardeen, J. M., and Press, W. H. (1973).J. Math. Phys.,14, 7.Google Scholar
  8. 8.
    Chandrasekhar, S. (1975).Proc. R. Soc. London Ser. A,343, 289.Google Scholar
  9. 9.
    Persides, S. (1976).Lett. Nuovo Cimento,17, 444.Google Scholar
  10. 10.
    Vishveshwara, C. V. (1970).Nature,227, 937.Google Scholar
  11. 11.
    Parker, L. (1972).Phys. Rev. D,5, 2905.Google Scholar
  12. 12.
    Chrzanowski, P. L., Matzner, R. A., Sandberg, V. A., and Ryan, M. P. (1976).Phys. Rev. D,14, 317.Google Scholar
  13. 13.
    Teukolsky, S. A., and Press, W. H. (1974).Astrophys. J.,193, 443.Google Scholar
  14. 14.
    Chang, S. C., and Janis, A. I. (1976).J. Math. Phys.,17, 1432.Google Scholar
  15. 15.
    Chandrasekhar, S. (1976).Proc. R. Soc. London Ser. A,349, 1.Google Scholar
  16. 16.
    Detweiler, S. (1916).Proc. R. Soc. London Ser. A,349, 217.Google Scholar
  17. 17.
    Couch, W. E., Torrence, R. J., Janis, A. I., and Newman, E. T. (1968).J. Math. Phys.,9, 484.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • W. E. Couch
    • 1
  • R. J. Torrence
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada

Personalised recommendations