Algebra and Logic

, Volume 33, Issue 6, pp 386–397 | Cite as

The structure of alternative superbimodules

  • N. A. Pisarenko
Article

Abstract

Let A be a semisimple alternative superalgebra over a field of characteristic not 2, 3 which contains no sub-superalgebras of type (M1(F), M1(F)) in its decomposition into prime ideals. Then each superbimodule of A is merely an alternative A-bimodule. The case where A = (M1(F),M1(F)) produces, however, a series of indecomposable A-superbimodules. In the present article, we describe such superbimodules over an algebraically closed field.

Keywords

Present Article Mathematical Logic Prime Ideal Alternative Superalgebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. Schafer, “Representation of alternative algebras,”Trans. Am. Math. Soc.,72, No. 1, 1–17 (1952).Google Scholar
  2. 2.
    N. Jacobson, “Structure of alternative and Jordan bimodules,”Osaka J. Math.,6, No. 1, 1–71 (1954).Google Scholar
  3. 3.
    N. A. Pisarenko, “The Wedderburn decomposition in finite-dimensional alternative superalgebras,”Algebra Logika,32, No. 4, 428–440 (1993).Google Scholar
  4. 4.
    R. S. Pierce,Associative Algebras, Springer, New York (1982).Google Scholar
  5. 5.
    E. I. Zelmanov and I. P. Shestakov, “Prime alternative superalgebras and nilpotency of the radical of the free nilpotent algebra,”Izv. Akad. Nauk SSSR, Ser. Mat.,54, No. 4, 676–693 (1990).Google Scholar
  6. 6.
    A. R. Kemer, “Identities of associative algebras are finitely based,”Algebra Logika,26, No. 5, 597–641 (1987).Google Scholar
  7. 7.
    The Dnestrov Notebook, Unsolved Problems in the Theory of Rings and Modules, 4th edn., Novosibirsk (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • N. A. Pisarenko

There are no affiliations available

Personalised recommendations