Abstract
In the paper, nontrivial permutation representations of minimal degree are studied for finite simple orthogonal groups. For them, we find degrees, ranks, subdegrees, point stabilizers and their pairwise intersections.
References
V. D. Mazurov, “Minimal permutation representations of finite simple classical groups. Special linear, symplectic, and unitary groups,”Algebra Logika,32, No. 3, 42–153 (1993).
P. Kleidman and M. Liebeck,The Subgroup Structure of the Finite Classical Groups, Cambridge Univ. Press (1990).
M. Aschbcher,Finite Group Theory, Cambridge Univ. Press (1986).
J. H. Conway, R. T. Curtis, S. P. Norton, et al.,Atlas of Finite Groups, Oxford (1985).
B. N. Cooperstein, “Minimal degree for a permutation representation of a classical group,”Israel J. Math.,30, No. 3, 213–235 (1978).
Additional information
Translated fromAlgebra i Logika, Vol. 33, No. 6, pp. 603–627, November–December, 1994.
Rights and permissions
About this article
Cite this article
Vasil'ev, V.A., Mazurov, V.D. Minimal permutation representations of finite simple orthogonal groups. Algebr Logic 33, 337–350 (1995). https://doi.org/10.1007/BF00756348
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00756348