Skip to main content
Log in

On theories of gravitation with higher-order field equations

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Weyl and Eddington suggested three alternative general relativistic theories of gravitation with fourth-order field equations which in empty space admit the Schwarzschild metric as a solution. These theories, Like Einstein's, follow from a variational principle and thus imply differential identities. If, as in Einstein's theory, the sources are taken to be proportional to the energy-momentum tensorT μν, these identities imply the vanishing of the covariant divergence ofT μv. It is shown here that in the presence of extended sources, Weyl's and Eddington's theories (as well as all other higher-order metric theories derivable from an action principle) contradict Newton's law of gravitation in the nonrelativistic limit. To entail this law would require a modification of the source term of the field equations which in general is not compatible withT μv ;v alternatively, one could require only asymptotic agreement with Newton's law, which is compatible with supplementary higher-order terms in Einstein's equations, but which requires the introduction of universal constants of the dimensions of length. None of the generalizations of Einstein's equations considered here admits Birkhoff's theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weyl, H. (1921).Raum-Zeit-Materie, 4th ed., Springer-Verlag, Berlin. [English translation: (1952).Space-Time-Matter, Dover, New York], Chap. IV.

    Google Scholar 

  2. Eddington, A. (1924).The Mathematical Theory of Relativity, 2nd ed., Chap. IV. Cambridge University Press.

  3. Vermeil, H. (1917).Nachr. Ges. Wiss. Göttingen;334; see also Ref. [1], Appendix II; Cartan, (1922).E. J. de Math. Pures et Appl. 1, 141.

  4. Weyl, H.Ann. Phys. 59, 101 (1919).

    Google Scholar 

  5. Pauli, W. (1921). (1921). inEncyklopädie der mathematischen Wissenschaften, Vol. V/2, B. G. Teubner, Leipzig [English translation (with supplementary notes): (1958).Theory of Relativity, Pergamon Press, New York], Sec. 65.

    Google Scholar 

  6. Lanczos, C. (1938).Ann. Math. 39, 842.

    Google Scholar 

  7. Buchdahl, H. A. (1948).Proc. Edinburgh Math. Soc.,8, 89.

    Google Scholar 

  8. Weitzenböck, R. (1921).Sitzber. Akad. Wiss. Wien,130,IIa, 15.

    Google Scholar 

  9. Buchdahl, H. A. (1948).Quart. J. Math. Oxford,19, 150.

    Google Scholar 

  10. DeWitt, B. S. (1965).Dynamical Theory of Groups and Fields, p. 134, Gordon and Breach, New York.

    Google Scholar 

  11. Bach, R. (1921).Math. Z.,9, 110.

    Google Scholar 

  12. Havas, P. (1964).J. Math. Phys.,5, 373.

    Google Scholar 

  13. Havas, P. (in press). “Equations of Motion and Radiation Reaction in the Special and General Theory of Relativity,” Sec. I. 5, inProceedings of the International School of Physics “Enrico Fermi”, 67th Course, ed. Ehlers, J., North Holland Publishing Co.

  14. Havas, P. (1967). inDelaware Seminar in the Foundations of Physics, ed. Bunge, M., p. 124, Springer-Verlag, Berlin.

    Google Scholar 

  15. Havas, P. (1964).Rev. Mod. Phys.,36, 938.

    Google Scholar 

  16. Pauli, W. (1919).Phys. Z.,20, 457.

    Google Scholar 

  17. Weyl, H. (1918).Math. Z.,2, 411.

    Google Scholar 

  18. Pauli, W. (1919).Verh. Deut. Phys. Ges.,21, 742.

    Google Scholar 

  19. Havas, P. (1962). inRecent Developments in General Relativity, p. 259, Pergamon Press-PWN, New York.

    Google Scholar 

  20. See, e.g., Rademachet, H., and Rothe, E. (1930). inDie Differential-und Integral-gleichungen der mathematischen Physik, ed. Franck, P., and Mises, R. Vol. I, Chap. 19, § 63, F. Vieweg, Braunschweig.

    Google Scholar 

  21. See, e.g., Infeld, L., and Plebański, J. (1960).Motion and Relativity, Pergamon Press PWN, New York.

    Google Scholar 

  22. Deser, S., van Niewenhuizen, P., and Tsao, H. S. (1974).Phys. Rev.,D10, 3337.

    Google Scholar 

  23. Sneddon, I. N., and Thornhill, C. K. (1949).Proc. Cambridge Phil. Soc.,45, 318.

    Google Scholar 

  24. Birkhoff, G. D. (1923).Relativity and Modern Physics, Chap. XV, Sec. 7, Harvard University Press, Cambridge.

    Google Scholar 

  25. Goenner, H. (1970).Commun. Math. Phys.,16, 34.

    Google Scholar 

  26. Deser, S., and Laurent, B. E. (1968).Am. J. Phys.,36, 789.

    Google Scholar 

  27. Papapetrou, A. (1963).C. R. Acad. Sci., Paris,257, 2616.

    Google Scholar 

  28. Buchdahl, H. A. (1948).Proc. Nat. Acad. Sci. U.S.A.,34, 66.

    Google Scholar 

  29. Bopp, F. (1940).Ann. Phys.,38, 345; (1943).42, 575; Podolsky, B. (1942).Phys. Rev.,62, 68.

    Google Scholar 

  30. Bouwkamp, C. J. (1947).Physica,13, 501.

    Google Scholar 

  31. Utiyama, R., and DeWitt, B. S. (1962).J. Math. Phys.,3, 608; Ref. [10], Chap. 24; Sakharov, A. D. (1967).Dokl. Akad. Nauk SSSR,177, 70 [(1968).Sov. Phys.-Dokl. 12, 1040]; Stelle, K. S. (1976). Brandeis University Thesis.

    Google Scholar 

  32. See, e.g., Pais, A., and Uhlenbeck, J. E. (1950).Phys. Rev.,79, 145.

    Google Scholar 

  33. Buchdahl, H. A. (1951).Acta Math.,85, 63.

    Google Scholar 

  34. Pechlaner, E. and Sexl, R. (1966).Commun. Math. Phys.,2, 165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Achille Papapetrou on the occasion of his retirement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havas, P. On theories of gravitation with higher-order field equations. Gen Relat Gravit 8, 631–645 (1977). https://doi.org/10.1007/BF00756315

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00756315

Keywords

Navigation