General Relativity and Gravitation

, Volume 14, Issue 11, pp 1043–1049 | Cite as

General relativity as a soldered nonlinear sigma model

  • Roberto Percacci
Research Articles


It is shown that the known analogies between general relativity and the nonlinear sigma models are not restricted to kinematics but extend also to the dynamics. Some comments are made on possible consequences of this point of view and on the so-called gauge theories of gravitation.


General Relativity Gauge Theory Differential Geometry Sigma Model Nonlinear Sigma Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Percacci, R. (1980). “Geometrical Aspects of Nonlinear Sigma Models,” unpublished report INFN/AE-80/1.Google Scholar
  2. 2.
    Isham, C. J., Salam, Abdus, and Strathdee, J. (1971).Ann. Phys. (N.Y.),62, 98; Ogievetsky, V. I. (1973).Lett. Nuovo Cimenta,8, 988; Cho, Y. M. and Freund, P. G. O. (1975).Phys. Rev. D,12, 1711.Google Scholar
  3. 3.
    Trautman, A. (1970).Rep. Math. Phys.,1, 29.Google Scholar
  4. 4.
    Trautman, A. (1979).Czech. J. Phys.,B29, 107.Google Scholar
  5. 5.
    de Witt, B. (1964). “Dynamical Theory of Groups and Fields,” inRelativity, Groups and Topology, Gordon and Breach, New York.Google Scholar
  6. 6.
    Thirring, W. (1979). “A Course in Mathematical Physics,” Vol. II, Springer Verlag, New York, Wien.Google Scholar
  7. 7.
    Eells, J., and Lemaire, L. (1978).Bull. Lond. Math. Soc.,10, 1.Google Scholar
  8. 8.
    Kobayashi, S., and Nomizu, K. (1963).Foundations of Differential Geometry, Vol. I, Interscience, New York.Google Scholar
  9. 9.
    Choquet-Bruhat, Y., de Witt-Morette, C., and Dillard-Bleick, M. (1977).Analysis, Manifolds and Physics, North Holland, Amsterdam.Google Scholar
  10. 10.
    Julia, B. (1979). “Extra Dimensions: Recent Progress Using Old Ideas,” (talk given at the second Marcell Grossmann meeting) LPTENS 79-15.Google Scholar
  11. 11.
    Trautman, A. (1973).Symp. Math. 12, 139.Google Scholar
  12. 12.
    Møller, C. (1964).Mat. Fys. Medd.,34(3).Google Scholar
  13. 13.
    Isham, C. J. (1981). “Topological θ-Sectors in Canonically Quantized Gravity,” Imperial College ICTP 80/81-36.Google Scholar
  14. 14.
    Wallner, R. P. (1982). Ph.D. thesis (Univ. Wien).Google Scholar
  15. 15.
    Hayashi, K. (1973).Nuovo Cimenta,16A, 639, Appendix A.Google Scholar
  16. 16.
    Mack, G. (1981).Fortschr. Phys.,29, 135.Google Scholar
  17. 17.
    Percacci, R. (1981). “Global Definition of Nonlinear Sigma Model and Some Consequences,”J. Math. Phys.,22, 1892.Google Scholar
  18. 18.
    Nambu, Y. (1977). In “Five Decades of Weak Interactions,” Lectures in honor of R. Marshak,Ann. N. Y. Acad. Sci.,294, 74.Google Scholar
  19. 19.
    Hanson, A., and Regge, T. (1978). In “Proceedings of the Integrative Conference on Group Theory and Mathematical Physics,” Austin, Texas; d'Auria, R., and Regge, T. (1981). “Gravity Theories with Asymptotically Flat Instantons,” IFTT 409 (Università di Torino).Google Scholar
  20. 20.
    d'Adda, A., di Vecchia, P., and Lüscher, M. (1978).Nucl. Phys.,B146, 63; Witten, E. (1979).Nucl. Phys.,B149, 285; Brezin, E., Hikami, S., and Zinn-Justin, J. (1980).Nucl. Phys.,B175, 524; Arefeva, I. Ya., and Azakov, S I. (1981). “Dynamical Rise of Gauge Fields in Matrix σ-Models,” Inst. Phys. Baku. No. 34.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Roberto Percacci
    • 1
    • 2
  1. 1.Istituto di Fisica Teorica dell'Università di TriesteItaly
  2. 2.Istituto Nazionale di Fisica Nucleare, Sezione di TriesteScuola Internazionale Superiore di Studi AvanzatiItaly

Personalised recommendations