Advertisement

General Relativity and Gravitation

, Volume 14, Issue 11, pp 1035–1041 | Cite as

Energy conditions and stability in general relativity

  • G. S. Hall
Research Articles

Abstract

The dominant energy condition in general relativity theory, which says that every observer measures a nonnegative local energy density and a nonspacelike local energy flow, is examined in connection with the types of energy-momentum tensor it permits. The condition that the energy-momentum tensor be “stable” in obeying the dominant energy condition is then defined in terms of a suitable topology on the set of energy-momentum tensors on space-time and the consequences are evaluated and discussed.

Keywords

Energy Density General Relativity Energy Condition Differential Geometry Energy Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge.Google Scholar
  2. 2.
    Plebański, J. (1964).Acta. Phys. Polon.,26, 963.Google Scholar
  3. 3.
    Ludwig, G., and Scanlon, G. (1971).Commun. Math. Phys.,20, 291.Google Scholar
  4. 4.
    Penrose, R. (1972). InGravitation: Problems, Prospects (Dedicated to the Memory of A. Z. Petrov), Izdat “Naukova Dumka” Kiev, p. 203.Google Scholar
  5. 5.
    Hall, G. S. (1976).J. Phys. A,9, 541.Google Scholar
  6. 6.
    Hall, G. S. (1979). “The Classification of Second Order Symmetric Tensors in General Relativity Theory.” Preprint of Lectures given at the Stefan Banach International Mathematical Centre, Warsaw, September 1979 (to appear).Google Scholar
  7. 7.
    Cormack, W. J., and Hall, G. S. (1979).J. Phys. A,12, 55.Google Scholar
  8. 8.
    Cormack, W. J., and Hall, G. S.Int. J. Theor. Phys. (to appear).Google Scholar
  9. 9.
    Hawking, S. W. (1971).Gen. Rel. Grav.,1, 393.Google Scholar
  10. 10.
    Goodinson, P. A., and Newing, R. (1970).J. Inst. Math. Appl.,6, 212.Google Scholar
  11. 11.
    Sachs, R. K., and Wu, H. (1977).General Relativity for Mathematicians, Springer-Verlag, Berlin.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • G. S. Hall
    • 1
  1. 1.Department of MathematicsUniversity of AberdeenAberdeenScotland

Personalised recommendations