Skip to main content
Log in

A new view of the ECSK theory with a Dirac spinor

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A formulation of the ECSK (Einstein-Cartan-Sciama-Kibble) theory with a Dirac spinor is given in terms of differential forms with values in exterior vector bundles associated with a fixed principalSL(2, ℂ)-bundle over a 4-manifold. In particular, tetrad fields are represented as soldering forms. In this setting, both the scalar curvature (Einstein-Hilbert) action density and the Dirac action density are well-defined polynomial functions of the soldering form and an independentSL(2,ℂ)-connection form. Thus, these densities are defined even where the tetrad field is degenerate (e.g. when fluctuations in the gravitational field are large). A careful analysis of the initial-value problem (in terms of an evolving triad field, SU(2)-connection, second-fundamental form and spinor field) reveals a first-order hyperbolic system of 27 evolution equations (not including the 8 evolution equations for the Dirac spinor) and 16 constraints. There are 10 conservation equations (due to local Poincaré invariance) which team up with some of the evolution equations to guarantee that the 16 constraints are preserved under the evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonowicz, M. and Szczyrba, W. (1985).Phys. Rev. D,31, 3104.

    Google Scholar 

  2. Baekler, P., Hehl, F. W., and Mielke, E. W. (1986). InProceedings of the Fourth Marcel Grossmann Meeting on General Relativity, Ruffini, R., ed. (Elsevier Science Publishers, Amsterdam).

    Google Scholar 

  3. Bao, D., Isenberg, J. and Yasskin, P. B. (1985).Ann. Phys.,164, 105.

    Google Scholar 

  4. Bleecker, D. D. (1981).Gauge Theory and Variational Principles, (Addison-Wesley, Reading, Mass.), Ch. 1–3.

    Google Scholar 

  5. Bleecker, D. D. (1987).Class. Quant. Grav.,4, 827.

    Google Scholar 

  6. Cartan, E. (1925).Ann. Ec. Norm. Sup.,42, 17.

    Google Scholar 

  7. Cartan, E. (1938).Leçons sur la Theorie des Spineurs II (Hermann, Paris).

    Google Scholar 

  8. Castellani, L., van Nieuwenhuizen, P., and Pilati, M. (1982).Phys. Rev. D,26, 352.

    Google Scholar 

  9. Chinea, F.J. (1989).Gen. Rel. Grav.,21, 21.

    Google Scholar 

  10. Choquet-Bruhat, Y. (1983).Lett. Math. Phys., 7, 459; (1987). InFestschrift for I. Robinson, W. Rindler and A. Trautman, eds. (Bibliopolis, Napoli), p. 83.

    Google Scholar 

  11. Deser, S. and Isham, C. J. (1976).Phys. Rev. D,14, 2505.

    Google Scholar 

  12. Di Stefano, R. and Rauch, R. T. (1982).Phys. Rev. D,26, 1242.

    Google Scholar 

  13. Fischer, A.E. and Marsden, J.E. (1972).Commun. Math. Phys.,28, 1.

    Google Scholar 

  14. Hehl, F. W. (1980). InCosmology and Gravitation, Bergmann, P.G. and De Sabbata, V., eds. (Plenum Press, New York).

    Google Scholar 

  15. Hehl, F. W., von der Heyde, P., Kerlick, G. D., and Nester, J. M. (1976).Rev. Mod. Phys.,48, 393.

    Google Scholar 

  16. Hehl, F. W. and McCrea, J. D. (1985).Found. Phys.,16, 267.

    Google Scholar 

  17. Henneaux, M. (1978).Gen. Rel. Grav.,9, 1031.

    Google Scholar 

  18. Isenberg, J. A. and Nester, J. M. (1980). InGeneral Relativity and Gravitation, Held, A., ed. (Plenum Press, New York).

    Google Scholar 

  19. Kerlick, D. G. (1975).Phys. Rev. D,12, 3004.

    Google Scholar 

  20. Kheyfets, A. (1985).Found. Phys.,16, 483.

    Google Scholar 

  21. Kibble, T. W. B. (1961).J. Math. Phys.,2, 212.

    Google Scholar 

  22. Kobayashi, S., and Nomizu, K. (1963).Foundations of Differential Geometry I, (Interscience Publishers, New York), Chap. II.

    Google Scholar 

  23. McCrea, J. D. (1987). InDifferential Geometric Methods in Mathematical Physics,Proceedings, Salamanca 1985, P. L. Garcia and A. Pérez-Rendón eds.Lecture Notes in Mathematics, (Springer-Verlag) Vol. 1251, p. 222.

  24. Mielke, E. W. (1987).Geometrodynamics of Gauge Fields, (Akademie-verlag, Berlin) p. 114.

    Google Scholar 

  25. Mielke, E. W., and Wallner, R. P. (1988)Nuovo Cimento,101 B, 607.

    Google Scholar 

  26. Nelson, J. E., and Teitelboim, C. (1978).Ann. Phys.,116, 86.

    Google Scholar 

  27. Rumpf, H. (1982).Gen. Rel. Grav.,14, 773.

    Google Scholar 

  28. Schrödinger, E. (1932).Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl.,XI, 105 (reprinted in Erwin Schrödinger —Collected Papers, Vol. 3, Vienna (1984), 436).

    Google Scholar 

  29. Szczyrba, W. (1982).Phys. Rev. D,25, 2548.

    Google Scholar 

  30. Szczyrba, W. (1984).Ann. Phys.,158, 320.

    Google Scholar 

  31. Taylor, M.E. (1981).Pseudodifferential Operators (Princeton University Press, Princeton), Ch. 4.

    Google Scholar 

  32. Trautman, A. (1973).Symposia Mathematica,12, 139.

    Google Scholar 

  33. Weyl, H. (1950).Phys. Rev.,77, 699.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleecker, D.D. A new view of the ECSK theory with a Dirac spinor. Gen Relat Gravit 22, 299–347 (1990). https://doi.org/10.1007/BF00756279

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00756279

Keywords

Navigation