General Relativity and Gravitation

, Volume 14, Issue 4, pp 379–392 | Cite as

Conformal invariance and the Higgs boson mass in the Weinberg-Salam theory with gravitational mechanism of instability

  • V. M. Nikolaenko
  • G. N. Shikin
  • K. P. Staniukowicz
Research Articles


The assumption that the Higgs scalar field equation is conformally invariant leads to new features of the unified gauge theories including classical gravitation. Both the self-consistent approach and the external curved space-time method are discussed here. The purpose is to compute the upper and lower bounds on the mass of the stable Higgs particle. Also an attempt to obtain a discrete mass spectrum at classical level was made.


Gauge Theory Higgs Boson Conformal Invariance Boson Mass Classical Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weinberg, S. (1967).Phys. Rev. Lett.,19, 1264; Salam, A. (1968). InElementary Particle Theory. Almquist and Forlag, Stockholm.Google Scholar
  2. 2.
    Dreitlein, J. (1974).Phys. Rev. Lett.,33, 1243; Kirzhnits, D. A., and Linde, A. D. (1976).Ann. Phys. (New York),101, 195.Google Scholar
  3. 3.
    Domokos, G. (1976). Preprint, DESY, 76/24; Grib, A. A., and Mostepanenko, V. M. (1977).JETPh Pis'ma,25, 302.Google Scholar
  4. 4.
    Discus, D. A., and Kolb, E. W. (1978).Phys. Rev. D,18, 1829.Google Scholar
  5. 5.
    Penrose, R. (1964). InRelativity, Groups and Topology, p. 565. New York, London. (De Witt) Chernikov, N. A., and Tagirov, E. A. (1968).Ann. Inst. Henri Poincare,9, 109.Google Scholar
  6. 6.
    Nikolaenko, V. M. (1980).Theor. Math. Phys.,42, 195; Nikolaenko, V. M. (1980). InAbstracts of GRG-9, Jena, DDR, Vol. 3, p. 602.Google Scholar
  7. 7.
    Melnikov, V. N., and Orlov, S. V. (1979).Phys. Lett.,70A, 263.Google Scholar
  8. 8.
    Nikolaenko, V. M. (1976).Acta Phys. Pol.,B7, 681.Google Scholar
  9. 9.
    Nikolaenko, V. M. (1977).Acta Phys. Pol.,B8, 911.Google Scholar
  10. 10.
    Hehl, F. W., v. der Heyde, P., Nester, J. M., and Kerlick, G. D. (1976).Rev. Mod. Phys.,48, 393; Popov, V. N. (1976).Continual Integrals in the Quantum Field Theory and Statistical Physics. Atomizdat, Moscow.Google Scholar
  11. 11.
    Nouri-Moghadam, M., and Taylor, J. G. (1976).J. Phys. A,9, 59, 73.Google Scholar
  12. 12.
    Staniukovich, K. P. (1965).Gravitational Field and Elementary Particles. Atomizdat, Moscow.Google Scholar
  13. 13.
    Markov, M. A. (1965).Suppl. Progr. Theor. Phys. (Extra Number), 85.Google Scholar
  14. 14.
    Nikolaenko, V. M. (1978).Theor. Math. Phys.,34, 334; Nikolaenko, V. M. (1977). InAbstracts of GRG-8, Canada.Google Scholar
  15. 15.
    Nikolaenko, V. M., (1980). InAbstracts of GRG-9, Jena, DDR, Vol. 3, p. 604.Google Scholar
  16. 16.
    Korepin, V. E., and Faddeev, L. D. (1975).Theor. Math. Phys.,25, 147.Google Scholar
  17. 17.
    Bateman, H., and Erdelyi, A. (1953).Higher Transcendental Functions, Vol. 2. McGraw-Hill, New York.Google Scholar
  18. 18.
    Bogolubov, N. N., and Shirkov, D. V. (1957).Introduction in the Quantized Fields Theory. Moscow (Nauka).Google Scholar
  19. 19.
    Bronnikov, K. A., Melnikov, V. N., Shikin, G. N., and Staniukovich, K. P. (1979).Ann. Phys. (New York),118, 84.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • V. M. Nikolaenko
    • 1
  • G. N. Shikin
    • 1
  • K. P. Staniukowicz
    • 1
  1. 1.USSR State Committee for StandardsMoscowUSSR

Personalised recommendations