The generalized Einstein-Maxwell theory of gravitation

Abstract

A new Lagrangian theory of gravitation in which the metric and the arbitrary affine connection are regarded as independent field variables has been considered. Making use of the pure geometrical objects only from the variational principle the empty field equations are derived. It is shown that the metric obeys the ordinary Einstein equations of general relativity. However, the covariant derivative of the metric tensor does not vanish, so that the vector's length is generally nonintegrable under the parallel displacement. The torsion trace vector turns out to be the natural dynamical variable, satisfying the Maxwell-like equations with tensor of homothetic curvature as the Maxwell tensor. The equations of motion are explored; they are shown to be identical to the motion of electric charge under the Lorentz force. The conservation laws are discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Schouten, J. (1954).Ricci-Calculus, 2nd ed. (Springer U.P., Berlin); Eisenhart, L. (1949).Riemanian Geometry, 2nd ed. (Princeton, New York); Rashevski, P. K. (1967).Riemanian Geometry and Tensor Analysis, 2nd ed. (Moscow) (in Russian).

    Google Scholar 

  2. 2.

    Cartan, É. (1923).Ann. Éc. Norm.,40, 325.

    Google Scholar 

  3. 3.

    Weyl, H. (1920).Raum, Zeit, Materie, 3rd ed. (Julius Springer, Berlin).

    Google Scholar 

  4. 4.

    Trautman, A. (1973).Sym. Math.,12, 139; Ponomariov, V. N. (1973). Preprint ITP, 69P (Kiev) (in Russian).

    Google Scholar 

  5. 5.

    Hehl, F. W., Von der Heyde, P., Kerlick, G. D., and Nester, J. M., (1976).Rev. Mod. Phys.,48, 393.

    Google Scholar 

  6. 6.

    Einstein, A. (1948).Rev. Mod. Phys.,20, 35; Schrödinger, E. (1950).Space-Time Structure (Cambridge U.P., Cambridge); Tonnelat, M.-A. (1959).Les théories unitaires de l'electromagnetisme et de ta gravitation (Gouthier, Paris).

    Google Scholar 

  7. 7.

    Friedman, A. (1967).World as Space-Time (Moscow) (in Russian).

  8. 8.

    Kopczynski, N. (1973). Doctoral thesis (Warsaw); Krechet, V. G., and Ponomariev, V. N. (1976).Problems of Gravitation and Elementary Particles Theory,7, 174 (in Russian).

  9. 9.

    Utiyama, R. (1956).Phys. Rev.,101, 1597; Kibble, T. W. (1961).J. Math. Phys.,2, 212.

    Google Scholar 

  10. 10.

    Frolov, B. N. (1970). Ph.D. thesis (Moscow, MOPi); (1963).Vestnik MGU,6, 48 (in Russian).

    Google Scholar 

  11. 11.

    Palatini, A. (1919).Rend. Circ. Mat., Palermo,43, 203.

    Google Scholar 

  12. 12.

    Kopczynski, N. (1975).Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron., Phys.,23, 467.; Ponomariov, V. N., and Tseytlin, A. A., (1978).Vestnik Moskovskogo Universiteta,19, No. 6, 57 (in Russian).

    Google Scholar 

  13. 13.

    Obukhov, Yu. N., Ponomariov, V. N., and Krechet, V. G. (1978).Gravitational Theory and Relativity (Kazan),14, 121 (in Russian).

    Google Scholar 

  14. 14.

    Mitskievitsch, N. V. (1969).Physical Fields in General Relativity (Moscow) (in Russian).

  15. 15.

    Cartan, É. (1922).Comptes Rend.,174, 593.

    Google Scholar 

  16. 16.

    Einstein, A., and Kauffman, B. (1955).Ann. Math.,62, 128.

    Google Scholar 

  17. 17.

    Bade, W. L., and Jehle, H. (1953).Rev. Mod. Phys.,25, 714; Bergmann, P. (1957).Phys. Rev.,107, 625; Penrose, R. (1962).Ann. Phys.,10, 171; Peres, A. (1962).Suppl. Nuovo Cimento,24, 389; Corson, E. M. (1953).Introduction to Tensors, Spinors and Relativistic Wave Equations (Hafner, New York); Plebanski, J. (1972).Lectures on Nonlinear Electrodynamics (Nordita).

    Google Scholar 

  18. 18.

    Schmutzer, E. (1968).Relativistiche Physik (B. G. Teubner, Berlin).

    Google Scholar 

  19. 19.

    Harish-Chandra (1946).Proc. Ind. Acad. Sci.,23, 152.

    Google Scholar 

  20. 20.

    Fock, V., and Iwanenko, D. (1929).Compt. Rend.,188, 1470.

    Google Scholar 

  21. 21.

    Iwanenko, D. (1938).Sov. Phys.,13, 141; Dürr, H., Heisenberg, W., Mitter, H., Schilder, S., and Yamazaki, K., (1959).Z. Naturforsch.,14a, 422; Roditchev, V. I. (1961).Sov. Phys. JETP,40, 1469 (in Russian); Hehl, F., and Datta, R. (1971).J. Math. Phys.,12, 1334; Krechet, V. G., Ponomariev, V. N. (1975).Theor. Math. Phys.,7, 45 (in Russian).

    Google Scholar 

  22. 22.

    Motz, L. (1960).Phys. Rev.,119, 1102.

    Google Scholar 

  23. 23.

    Einstein, A. (1955).Relativistic Theory of Nonsymmetric Field. The Meaning of Relativity. 5th ed. (Princeton U.P., Princeton, New Jersey).

    Google Scholar 

  24. 24.

    Hehl, F. W., Lord, E. A., and Ne'eman, Y. (1979).Phys. Rev. D,17, 428.

    Google Scholar 

  25. 25.

    Obukhov, Yu. N. to be published.

  26. 26.

    Ivanenko, D. (1980). InRelativity, Quanta and Cosmology (Academic, New York), Vol. 1, p. 295.

    Google Scholar 

  27. 27.

    Obukhov, Yu. N. (1980). InAbstracts of Contributed Papers to 9th Intern. Grav. Conf. Jena 1980, Vol. 3, p. 637.

    Google Scholar 

  28. 28.

    Ponomariov, V. N., and Tseytlin, A. A. (1981). To appear inNucl. Phys. B.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ponomariov, V.N., Obuchov, J. The generalized Einstein-Maxwell theory of gravitation. Gen Relat Gravit 14, 309–330 (1982). https://doi.org/10.1007/BF00756267

Download citation

Keywords

  • Variational Principle
  • Covariant Derivative
  • Einstein Equation
  • Lorentz Force
  • Dynamical Variable