General Relativity and Gravitation

, Volume 14, Issue 4, pp 309–330 | Cite as

The generalized Einstein-Maxwell theory of gravitation

  • V. N. Ponomariov
  • Ju. Obuchov
Research Articles


A new Lagrangian theory of gravitation in which the metric and the arbitrary affine connection are regarded as independent field variables has been considered. Making use of the pure geometrical objects only from the variational principle the empty field equations are derived. It is shown that the metric obeys the ordinary Einstein equations of general relativity. However, the covariant derivative of the metric tensor does not vanish, so that the vector's length is generally nonintegrable under the parallel displacement. The torsion trace vector turns out to be the natural dynamical variable, satisfying the Maxwell-like equations with tensor of homothetic curvature as the Maxwell tensor. The equations of motion are explored; they are shown to be identical to the motion of electric charge under the Lorentz force. The conservation laws are discussed.


Variational Principle Covariant Derivative Einstein Equation Lorentz Force Dynamical Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schouten, J. (1954).Ricci-Calculus, 2nd ed. (Springer U.P., Berlin); Eisenhart, L. (1949).Riemanian Geometry, 2nd ed. (Princeton, New York); Rashevski, P. K. (1967).Riemanian Geometry and Tensor Analysis, 2nd ed. (Moscow) (in Russian).Google Scholar
  2. 2.
    Cartan, É. (1923).Ann. Éc. Norm.,40, 325.Google Scholar
  3. 3.
    Weyl, H. (1920).Raum, Zeit, Materie, 3rd ed. (Julius Springer, Berlin).Google Scholar
  4. 4.
    Trautman, A. (1973).Sym. Math.,12, 139; Ponomariov, V. N. (1973). Preprint ITP, 69P (Kiev) (in Russian).Google Scholar
  5. 5.
    Hehl, F. W., Von der Heyde, P., Kerlick, G. D., and Nester, J. M., (1976).Rev. Mod. Phys.,48, 393.Google Scholar
  6. 6.
    Einstein, A. (1948).Rev. Mod. Phys.,20, 35; Schrödinger, E. (1950).Space-Time Structure (Cambridge U.P., Cambridge); Tonnelat, M.-A. (1959).Les théories unitaires de l'electromagnetisme et de ta gravitation (Gouthier, Paris).Google Scholar
  7. 7.
    Friedman, A. (1967).World as Space-Time (Moscow) (in Russian).Google Scholar
  8. 8.
    Kopczynski, N. (1973). Doctoral thesis (Warsaw); Krechet, V. G., and Ponomariev, V. N. (1976).Problems of Gravitation and Elementary Particles Theory,7, 174 (in Russian).Google Scholar
  9. 9.
    Utiyama, R. (1956).Phys. Rev.,101, 1597; Kibble, T. W. (1961).J. Math. Phys.,2, 212.Google Scholar
  10. 10.
    Frolov, B. N. (1970). Ph.D. thesis (Moscow, MOPi); (1963).Vestnik MGU,6, 48 (in Russian).Google Scholar
  11. 11.
    Palatini, A. (1919).Rend. Circ. Mat., Palermo,43, 203.Google Scholar
  12. 12.
    Kopczynski, N. (1975).Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron., Phys.,23, 467.; Ponomariov, V. N., and Tseytlin, A. A., (1978).Vestnik Moskovskogo Universiteta,19, No. 6, 57 (in Russian).Google Scholar
  13. 13.
    Obukhov, Yu. N., Ponomariov, V. N., and Krechet, V. G. (1978).Gravitational Theory and Relativity (Kazan),14, 121 (in Russian).Google Scholar
  14. 14.
    Mitskievitsch, N. V. (1969).Physical Fields in General Relativity (Moscow) (in Russian).Google Scholar
  15. 15.
    Cartan, É. (1922).Comptes Rend.,174, 593.Google Scholar
  16. 16.
    Einstein, A., and Kauffman, B. (1955).Ann. Math.,62, 128.Google Scholar
  17. 17.
    Bade, W. L., and Jehle, H. (1953).Rev. Mod. Phys.,25, 714; Bergmann, P. (1957).Phys. Rev.,107, 625; Penrose, R. (1962).Ann. Phys.,10, 171; Peres, A. (1962).Suppl. Nuovo Cimento,24, 389; Corson, E. M. (1953).Introduction to Tensors, Spinors and Relativistic Wave Equations (Hafner, New York); Plebanski, J. (1972).Lectures on Nonlinear Electrodynamics (Nordita).Google Scholar
  18. 18.
    Schmutzer, E. (1968).Relativistiche Physik (B. G. Teubner, Berlin).Google Scholar
  19. 19.
    Harish-Chandra (1946).Proc. Ind. Acad. Sci.,23, 152.Google Scholar
  20. 20.
    Fock, V., and Iwanenko, D. (1929).Compt. Rend.,188, 1470.Google Scholar
  21. 21.
    Iwanenko, D. (1938).Sov. Phys.,13, 141; Dürr, H., Heisenberg, W., Mitter, H., Schilder, S., and Yamazaki, K., (1959).Z. Naturforsch.,14a, 422; Roditchev, V. I. (1961).Sov. Phys. JETP,40, 1469 (in Russian); Hehl, F., and Datta, R. (1971).J. Math. Phys.,12, 1334; Krechet, V. G., Ponomariev, V. N. (1975).Theor. Math. Phys.,7, 45 (in Russian).Google Scholar
  22. 22.
    Motz, L. (1960).Phys. Rev.,119, 1102.Google Scholar
  23. 23.
    Einstein, A. (1955).Relativistic Theory of Nonsymmetric Field. The Meaning of Relativity. 5th ed. (Princeton U.P., Princeton, New Jersey).Google Scholar
  24. 24.
    Hehl, F. W., Lord, E. A., and Ne'eman, Y. (1979).Phys. Rev. D,17, 428.Google Scholar
  25. 25.
    Obukhov, Yu. N. to be published.Google Scholar
  26. 26.
    Ivanenko, D. (1980). InRelativity, Quanta and Cosmology (Academic, New York), Vol. 1, p. 295.Google Scholar
  27. 27.
    Obukhov, Yu. N. (1980). InAbstracts of Contributed Papers to 9th Intern. Grav. Conf. Jena 1980, Vol. 3, p. 637.Google Scholar
  28. 28.
    Ponomariov, V. N., and Tseytlin, A. A. (1981). To appear inNucl. Phys. B. Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • V. N. Ponomariov
    • 1
  • Ju. Obuchov
    • 1
  1. 1.Department of Theoretical PhysicsMGU Moscow State UniversityMoscowUSSR

Personalised recommendations