General Relativity and Gravitation

, Volume 25, Issue 3, pp 257–265 | Cite as

New cosmological models in the framework of a gauge theory of gravity

  • Janusz Garecki
Research Articles


The paper is devoted to the presentation of the new cosmological solutions obtained by the author within the framework of a gauge theory of gravitation. The models are a combination of evolving models and steady-state models.


Gauge Theory Differential Geometry Cosmological Model Cosmological Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Trautman, A. (1971).Symp. Math. 12, 139.Google Scholar
  2. 2.
    Garecki, J. (1985).Class. Quant. Grav. 2, 403; (1989).Acta Phys. Pol. B20, 997; (1990).Gen. Rel. Grav. 22, 111.Google Scholar
  3. 3.
    Hehl, F. W., et al. (1980) InGeneral Relativity and Gravitation, A. Held, ed. (Plenum Press, New York); “Vacuum Solutions with Double Duality Properties of a Quadratic Gauge Field Theory”, Preprint IC/80/114; (1982). InProc. II Marcel Grossmann meeting in General Relativity, R. Ruffini, ed. (North Holland Publishing Company, Amsterdam); (1988).Class. Quant. Grav. 5, L105; (1989).Phys. Lett. 140A, 368; (1989).Found. Phys. 19, 1075.Google Scholar
  4. 4.
    McCrea, I.D., et al. (1984).Phys. Lett. 100A, 397; (1987).Nuovo Cimento 99B, 171; (1987). InXIV Int. Conference on Differential Methods in Mathematical Physics (Salamanca, Spain, 1985), P. L. Garcia, A. Perez-Reudon, eds. (Lecture Notes in Mathematics 1251, Springer-Verlag, Berlin); (1988).Phys. Lett. 127A, 65; (1988).Phys. Lett. 128A, 245.Google Scholar
  5. 5.
    Hayashi, K., and Shirafuji, T. (1980).Prog. Theor. Phys. 64, 866,883,1435,2222; (1981).Prog. Theor. Phys. 65, 525, 66, 318,2258; (1985).Prog. Theor. Phys. 73, 54,74, 852.Google Scholar
  6. 6.
    Kawai, T. (1986).Gen. Rel. Grav. 18, 995; (1986).Prog. Theor. Phys. 76, 1166; (1988).Prog. Theor. Phys. 79, 920; (1989).Prog. Theor. Phys. 81, 1119,82, 850.Google Scholar
  7. 7.
    Blagojeviv c, M. et al. (1983).Phys. Rev. D 28, 2455; (1984).Phys. Rev. D 30, 2508; (1986).Phys. Rev. D 34, 357; (1988).Nuovo Cimento 101B, 439; (1988).Class. Quant. Grav. 5, 1241.Google Scholar
  8. 8.
    Goenner, H., et al. (1984).Class. Quant. Grav. 1, 651; (1987). InGeneral Relativity and Gravitation 11, M. A. H. MacCallum, ed. (Cambridge University Press, Cambridge).Google Scholar
  9. 9.
    Gasperini, M. (1986).Phys. Rev. D 33, 3594; (1988).Phys. Lett. 205B, 517.Google Scholar
  10. 10.
    Obukhov, Yu. N., et al. (1989).Gen. Rel. Grav. 21, 1107.Google Scholar
  11. 11.
    Kijowski, J., Smolski, A., and Górnicka, A. (1990).Phys. Rev. D 41, 1875.Google Scholar
  12. 12.
    Garecki, J., Stelmach, J. (1990).Ann. Phys. (NY) 204, 315.Google Scholar
  13. 13.
    Tolman, R. C. (1964).Relativity, Thermodynamics and Cosmology (Clarendon, Oxford).Google Scholar
  14. 14.
    Korn, G. A., Korn, T. M. (1968).Mathematical Handbook (McGraw-Hill, New York).Google Scholar
  15. 15.
    Abramowitz, M., Stegun, I. A. (1964).Handbook of Mathematical Functions (Applied Mathematics Series, National Bureau of Standards, Washington).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Janusz Garecki
    • 1
  1. 1.Institute of PhysicsUniversity of SzczecinSzczecinPoland

Personalised recommendations