General Relativity and Gravitation

, Volume 12, Issue 3, pp 225–264 | Cite as

Golden Oldie

  • R. Penrose
Article

Abstract

A form of initial value problem is considered in which the initial hypersurface is not spacelike but null. This approach has the striking advantage over the more usual Cauchy problem that all constraints (initial data equations) are eliminated from the theory, for a wide class of interacting fields in special relativity and also for general relativity. The theory is most naturally described in terms of the two-component spinor calculus, for which an elementary introduction is given here. A general scheme for interacting fields, which holds both in special and general relativity, is presented which describes all fields in terms of sets of irreducible spinors. The concept of an exact set of such spinors is introduced and it is shown that this concept is the appropriate one for an initial value problem on a null cone without constraints. The initial data can be expressed in the form of a complex number, called a null datum, defined at each point of the null cone, one corresponding to each spinor. There is the curious feature of these null data that apparently it is sufficient here, to have onehalf as much information per point as in the corresponding Cauchy problem. The classical Maxwell-Dirac theory and the Einstein-Maxwell theory are two examples that can be put into the form of exact sets. The Einstein empty-space equations are also of particular note, and in this case the null datum describes essentially the intrinsic geometry of the null cone. The argument given here as applied to a general exact set is incomplete in two important respects. Firstly it depends on the null data being analytic, and secondly the initial hypersurface must be a cone. However, both these restrictions are removed in the case of certain elementary fields called basic free fields, examples of which are the Weyl neutrino field, the free Maxwell field, and the linearized gravitational field. For these cases a simple explicit formula is introduced which expresses the field at any point in terms of the null datum, as an integral taken over the intersection of the initial null hypersurface with the null cone of the point.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lichnerowicz, A. (1955).Théories relativistes de la gravitation et de l'électromagnétisme (Masson, Paris).Google Scholar
  2. 2.
    Foures-Bruhat, Y. (1956).J. Rat. Mech. Anal.,5, 941.Google Scholar
  3. 3.
    Bondi, H., van der Burg, M. G. J., and Metzner, A. W. K. (1962).Proc. R. Soc. London Ser. A,269, 21; Sachs, R. K. (1962).Proc. R. Soc. London Ser. A,270, 103.Google Scholar
  4. 4.
    Courant, R., and Hilbert, D. (1937).Methoden der Mathematischen Physik I, II (Interscience, New York).Google Scholar
  5. 5.
    Riesz, M. (1949).Acta Math.,81, 1.Google Scholar
  6. 6.
    Infeld, L., and van der Waerden, B. L. (1933).Sitz. Ber. Preuss. Acad., Wiss. Physik.-math, K1,9, 380.Google Scholar
  7. 7.
    Whittaker, E. T. (1937).Proc. R. Soc. London Ser. A,158, 38.Google Scholar
  8. 8.
    Ruse, H. S. (1944).Proc. R. Soc. Edinburg A,62, 64.Google Scholar
  9. 9.
    Bade, W. L., and Jehle, H. (1953).Rev. Mod. Phys.,25, 714.Google Scholar
  10. 10.
    Corson, E. M. (1953).Introduction to Tensors, Spinors, and Relativistic Waveequations (Blackie, London).Google Scholar
  11. 11.
    Veblen, O., and von Neumann, J. (1935–36).Princeton Institute for Advanced Study-Lectures, “Geometry of Complex Domains” (Princeton University Press, Princeton, New Jersey).Google Scholar
  12. 12.
    Payne, W. T. (1959).Am. J. Phys.,27, 318.Google Scholar
  13. 13.
    Penrose, R. (1960).Ann. Phys. (N. Y.),10, 171.Google Scholar
  14. 14.
    Newman, E. T., and Penrose, R. (1962).J. Math. Phys.,3, 566;4, 998.Google Scholar
  15. 15.
    Schrödinger, E. (1950).Space-Time Structure (Cambridge University Press, Cambridge).Google Scholar
  16. 16.
    Witten, L. (1959).Phys. Rev.,113, 357.Google Scholar
  17. 17.
    Dirac, P. A. M. (1936).Proc. R. Soc. London Ser. A,155, 447.Google Scholar
  18. 18.
    Hadamard, J. (1952).Lectures on Cauchy's Problem in Linear Partial Differential Equations (Dover, New York).Google Scholar
  19. 19.
    Newman, E. T., and Penrose, R. (1968).Proc. R. Soc. London Ser. A,305, 175.Google Scholar
  20. 20.
    Robinson, I. (1961).J. Math. Phys.,2, 290Google Scholar
  21. 21.
    Sachs, R. K. (1961).Proc. R. Soc. London Ser. A,264, 309.Google Scholar
  22. 22.
    Pirani, F. A. E. (1960).ARL Technical Note 60–143.Google Scholar
  23. 23.
    Penrose, R. (1966). InPerspectives in Geometry and Relativity, ed. Hoffmann, B. (Indiana University Press, Bloomington).Google Scholar
  24. 24.
    Penrose, R. (1972). InGeneral Relativity, Papers in Honour of J. L. Synge ed. O'Raifeartaigh, L. (Clarendon Press, Oxford) Geroch, R., Held, A., and Penrose, R. (1973).J. Math. Phys.,14, 874.Google Scholar
  25. 25.
    Hlavatý, V. (1959).J. Math. Mech.,8, 285.Google Scholar
  26. 26.
    Wigner, E. P., and Bargmann, V. (1948).Proc. Nat. Acad. Sci.,34, 211.Google Scholar
  27. 27.
    Bel, L. (1959).Compt. Rend.,248, 1297.Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • R. Penrose
    • 1
  1. 1.Department of AstronomyCornell UniversityIthaca

Personalised recommendations